






backgrounds p130 or p107 gene knockouts are viable (41, 132),
demonstrating biological roles for pRB p107 or p130. How-
ever, double knockouts of both p107 and p130 genes are peri-
natal lethal in mice, suggesting some degree of functional com-

pensation between p107 and p130 (41). More recently, Classon
et al. have shown that pRB promotes, but p107 antagonizes,
adipocyte differentiation in vitro (40), demonstrating the dif-
fering roles of the pRB family in cell fate determination. De-

FIG. 3. pRB binding to T antigen and chaperones. (A) The crystal structure of pRB bound to an E7 peptide (from papillomavirus) containing
an LXCXE motif (PDB code 1Gux [131]). Note that pRB binds to LXCXE entirely through its B domain, even though the A domain is required
for efficient complex formation with LXCXE motif-containing proteins. For comparison, the conserved amino acids of the T antigen and E7 RB
binding (LXCXE) motifs are shown in black. (B) The crystal structure of pRB bound to the first 117 amino acids of T antigen (PDB code 1GH6
[122]). Notice the LXCXE motif of T antigen binds to pRB in a manner similar to the LXCXE E7 peptide. Additionally, the J domain of T antigen
is depicted as four multicolored helices: helix 1 (yellow), helix 2 (dark blue), the highly conserved HPD loop in red connecting helices 2 and 3, helix
3 (green), and helix 4 (light green). (C) Domain map demonstrating that the A and B domains of pRB are highly conserved among the other pRB
family members, p130 and p107. The essential regions of pRB required for various activities, such as binding to Hsp70 or T antigen, are
diagrammed with black lines corresponding to particular regions of pRB (35, 106, 131).
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spite such functional differences between pRB, p107, and p130,
the underlying fundamental biochemical mechanism of their
transcriptional repression (Fig. 4) appears to be similar (86).

pRB family members interact with multiple transcription
factors (for a review, see reference 146) such as MyoD (79),
Pax-3 (262), c-Abl (256), and CDP/cut (248, 253). However,
the best understood, and perhaps the transcription factor most
important for RB’s growth-suppressive functions, is E2F (Fig.
1). E2F refers to any member of a family of transcription
factors (presently there are six members; E2F-1 to -6) that are
related by conserved regions of sequence similarity, as well as
by the ability to bind to the same consensus DNA binding site
(52).

The exact functions of the individual E2F family members
are currently unclear, and this topic is the focus of ongoing
research. Some E2F family members have overlapping func-
tions in the induction of S phase, promoting expression of
genes such as cyclins E and A, cdc2, CDK2, and enzymes
essential for DNA synthesis such as DNA polymerase � and
thymidine kinase (52). However, in certain contexts, such as
when bound by pRB family members, the role of E2F is not to
activate transcription, but rather the pRB-E2F complex serves
to repress transcription (Fig. 4). Thus, in theory, the same E2F
peptide can be a growth-promoting or growth-inhibitory agent,
depending on its binding partners. Recently, it has been pro-
posed that pRB-E2F complexes may bind near origins of DNA
replication and thus play a direct inhibitory role in DNA rep-
lication (120) as well as an indirect role by preventing synthesis
of the enzymes necessary to replicate DNA and drive cells to
cycle.

All known E2Fs function by associating with a heterodimeric
DNA binding partner called DP. There are two known DPs,
and both display sequence similarity to each other as well as to
the E2F family members (52). It is thought that both DP1 and
DP2 can bind to all six E2Fs, enhancing their DNA binding
function (271, 272).

The E2F family is commonly grouped into three subclasses
based on functional and structural similarities. One class in-
cludes E2F-1 to -3, which encode their own nuclear localiza-
tion signal and most frequently bind pRB (52). E2F-1, -2, and
-3 are commonly thought to activate cellular division. In sup-
port of this notion, E2F-1 knockout mouse embryo fibroblasts

(MEFs) are defective for exit from G0 (252), and E2F-3 is
required for cell proliferation induced by loss of pRB (276). A
second class includes E2F-4 and E2F-5, which do not contain
a nuclear localization signal and are most commonly found
associated with p130 and p107. E2F-4 and E2F-5 are not re-
quired for exit from G0 in MEFs, and unlike E2F-1 to -3, at
least in some cell types, their role is not to activate cellular
division but rather to mediate cell cycle inhibitory signals trans-
duced by p16 (71). The third class includes E2F-6, which does
not bind to pRB family members and lacks a transcriptional
activation domain. Therefore, it has been proposed to play a
predominantly inhibitory role in transcription (27, 72, 245).

The fact that the pRB and E2F families are the focus of
intensive study is a testament to their essential function in
cellular growth control. Their central role in the molecular
mechanisms underlying human cancer have led them to be a
focal point for genetic and drug therapeutic approaches (37,
93). The depth of our present understanding of these proteins
is just a fraction of what is to come; however, much of what we
do know has been enhanced either directly or indirectly by the
study of DNA tumor viruses.

p53

p53 is one of the most-studied molecules, with over 21,000
reports found when “p53” is the subject of a Medline search on
the Internet. As with pRB, the scope of the data encompassing
p53 is enormous, and many reviews are available (for example
see volume 18, issue 53, of Oncogene [1999]). Therefore, this
review discusses only the very rudimentary aspects of p53 bi-
ology.

As is the case with the pRB family, the field of p53 research
finds its roots in the study of DNA tumor viruses. p53 was
initially identified as a coprecipitating protein in immunopre-
cipitation assays of T antigen (30, 125, 127, 145).

p53 is a specific transcription factor, referred to as the
“guardian of the genome,” whose function can prevent DNA
synthesis, cause G2 and G1 growth arrest, and induce apoptosis
(reviewed in reference 135). The transcriptional adapter pro-
tein referred to as p300 (also known as CREB-binding protein
[CBP]) is sometimes found associated with p53, and it is
thought to assist in numerous cell cycle regulatory functions,
including those of p53 (see below and references 2, 80, 142,
and 217). p53 is ubiquitously expressed but is not stable; how-
ever, upon genotoxic stresses such as irradiation, chemotoxin
exposure, or virus-induced unscheduled DNA synthesis, p53
steady-state levels increase. An increase in p53 levels leads to
a cascade of events including the transcriptional activation of
the CDK/cyclin kinase inhibitor p21 and the ubiquitin E3 ligase
shuttling protein MDM2 (reviewed in reference 157). p21 in-
hibits the cell cycle-promoting functions of the CDKs (156),
and MDM2 down-regulates p53 function, inducing the degra-
dation of p53 (Fig. 2) (157). Thus, down-regulation of p53
function by MDM2 provides a feedback loop mechanism that
allows the restoration of normal cell function when the geno-
toxic stress is diminished.

Recently several p53-related proteins have been identified,
such as p63 and p73 (reviewed in reference 150). These pro-
teins share regions of sequence similarity with p53 and can
bind to the same consensus DNA binding site. Several different

FIG. 4. pRB repression of the E2F transcription factors. In growth-
arrested cells the pRB family of proteins (pRB, p107, and p130) can
mediate transcriptional repression in at least two ways, via direct re-
pression domains and by recruiting the activity of the protein RBP1
which directly represses transcription and indirectly represses tran-
scription by recruiting HDAC (126). In dividing cells, pRB family
members are no longer bound to E2F, thus allowing for transcriptional
activation of promoters containing E2F binding sites.
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proteins are encoded by alternatively spliced gene products of
p63 and p73. The exact biological functions of these polypep-
tides are still to be defined. Some p53 family members have
functions similar to, and overlapping with, those of p53, in-
cluding transactivation, while other members are antagonistic
to p53 function (150).

Given the central roles of pRB and p53 in cellular growth
control, it is not surprising that both pathways cross talk with
numerous cellular signaling pathways such as Ras, MYC, and
Egf (13, 136, 215). Shown in Fig. 2 is a bare bones map of the
pRB and p53 signaling pathways. Note that each pathway
“communicates” with the other; for example, E2F induces S
phase but also stimulates p53 activity, which can inhibit cellular
division. The overlapping nature of these pathways is an im-
portant issue to keep in mind when addressing the transform-
ing activites of T antigen (see sections below).

p300

Proteins encoded by members of both the adenovirus and
polyomavirus families associate with p300. p300 and the re-
lated protein CBP are transcriptional adapter (or coactivator)
proteins that coordinate the formation of specific transcription
factor complexes (reviewed in reference 227). p300 and CBP
can enhance the transcriptional activity of many transactivators
including p53. This occurs by direct interaction of p300 or CBP
with the transcription factor or alternatively by modulating the
chromatin structure through recruitment of histone acetyl-
transferase activity (reviewed in reference 98). The adenovirus
E1A protein associates directly with p300 and CBP, requiring
its amino-terminal conserved region 1 (CR1) motif (55, 226,
261). The p300 and CBP binding site for SV40 T antigen has
been mapped to both the amino-terminal and carboxyl-termi-
nal domains of T antigen (54, 143). Currently, it is unclear if
this binding is direct, but expression of T antigen inactivates
p300 transcriptional activation and changes the phosphoryla-
tion state of p300 (1, 54). One consequence of inactivation of
p300 by tumor viruses is the inhibition of p53 transactivation
activity, thus further fostering a cellular environment condu-
cive to viral replication (98).

T-Antigen Interactions with pRB and p53

As noted in the previous sections, T antigen binds to both
pRB and p53 in a stable manner (48, 121). The regions of T
antigen required for these binding activities are mapped in Fig.
1. A bipartite domain in the carboxyl terminus of T antigen,
from amino acids 351 to 450 and amino acids 533 to 650, is
required for binding to p53 (121). T antigen does not bind to
the p53 family member p63 or p73 (94, 190). The LXCXE
motif at amino acids 103 to 107 is required for stable associa-
tion with all three members of the pRB family of proteins and
is commonly found in many cellular pRB-binding proteins. The
crystal structure of the highly conserved pRB A and B domains
bound to an LXCXE peptide has been solved (Fig. 3A) (131).
The conserved residues of the LXCXE motif (L, C, and E
[black] in Fig. 3A) are buried in a pocket that is entirely
contained in the B domain (depicted in red in Fig. 3A). Note:
even though E2F binds to this region of pRB, E2F does not

contain an LXCXE motif (91) and can coexist in a complex of
pRB bound to LXCXE-containing proteins (46, 233).

Until recently, the mechanism of how T antigen disrupts the
function of pRB and p53 was thought to be analogous to that
of an absorbent sponge; T antigen binds to the tumor suppres-
sor protein and “soaks up” the available pools of pRB and p53.
This hypothesis has been referred to in the literature as a
“sequestration model.” It is now understood that the mecha-
nisms by which T antigen inhibits pRB and p53 function are
more complicated. For example, T antigen down-regulates p53
function, but at least part of this activity does not require the
p53 binding domain of T antigen. In fact, an amino-terminal
fragment of T antigen that lacks the p53 binding domain can
still inhibit p53 function in some assays (74, 185, 194). This
argues that sequestration alone cannot account for the effects
of T antigen on p53. In addition to the pRB binding motif, T
antigen requires a functional chaperone J domain to down-
regulate some activities of the pRB family members (16, 47).
Additionally, a transforming activity(ies) in the carboxyl ter-
minus of T antigen also requires the function of the J domain
(223). Several lines of new evidence demonstrate that T anti-
gen is not a static sponge, but rather a dynamic machine, with
many of its activities depending on its chaperone function. The
rest of this review focuses on the role of the chaperone func-
tions of T antigen in SV40 biology.

WHAT IS A CHAPERONE?

Chaperone proteins promote the proper folding of proteins
and prevent protein aggregation during periods of cellular
stress (90). Historically, some of the first chaperones identified
were the heat shock class of proteins identified by the work of
Polissi et al. as proteins that are required for the ability of
phage � to infect Escherichia coli (179). This work identified
two structurally unrelated classes of chaperones: the chaper-
onins (including the Hsp60 family of proteins) and the DnaK/
DnaJ families of cochaperones. Both families are involved in
promoting the proper folding of protein substrates and are
especially important under conditions of cellular stress, such as
exposure to extreme temperatures or chemotoxic agents that
may lead to denaturation of protein tertiary structure (20).
Homologues of both the chaperonins and the DnaK/DnaJ
families of chaperones are found in a broad range of species,
including all known eukaryotes (186).

Another class of chaperones is that of the Hsp90-related
proteins. Hsp90-like proteins are found in prokaryotes and
eukaryotes and are involved in activating specific protein sig-
naling molecules, including kinases and steroid hormone bind-
ing receptors (19). Hsp90 proteins are the most abundant cy-
tosolic chaperones and are involved in the general stress
response functioning to assist in proper protein folding and
prevention of aggregation. Perhaps not surprisingly, Hsp90s
interact at multiple levels with the Hsp70 chaperone machine
(19, 66). For the purposes of this review, discussion is limited
to the DnaK/DnaJ families of proteins and their homologues.
(For in-depth reviews of the different classes of chaperones see
references 19, 20, and 90).
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DnaK/Hsc70 Families of Proteins

DnaK is a member of the Hsc70 family of chaperones. All
Hsc70 family members have a conserved domain structure
consisting of a large amino-terminal ATPase domain, a pep-
tide (substrate) binding domain, and an extreme carboxyl-ter-
minal region that is sometimes designated as the variable or
“lid” domain (Fig. 5D) (12, 20). Hsc70 binds to polypeptide
substrates, usually with hydrophobic or basic side chains of at
least 7 amino acids (10, 62, 75, 191). Hsc70 hydrolyzes ATP,
which induces changes in the conformation of Hsc70, which in
turn is transmitted to substrates bound by Hsc70. Through this
mechanism, Hsc70 performs various kinds of work, including
protein membrane transport, prevention of aggregation of de-
natured proteins, refolding of denatured proteins, and disrup-
tion of multiprotein complexes such as the replication machin-
ery of phage � (14, 90, 179). Thus, Hsc70 and its homologues
can be thought of as molecular motors that, when present in
the proper cellular context, are able to drive a multitude of
different tasks.

Hsc70 by itself has only a weak intrinsic ATPase activity. In
the presence of cochaperones and peptide substrates, the
ATPase activity of Hsc70 increases dramatically (113, 155). It
has been posited that this dual mechanism of stimulation re-
quired for maximal ATPase activity requires both a cochaper-
one and peptide substrate to prevent wasteful unproductive
“misfirings” of the Hsc70 ATPase cycle (117).

Crystallographic studies show that the DnaK ATPase do-
main consists of four alpha-helical domains (Fig. 5C) (89). The
crystal structure for the carboxyl-terminal substrate binding
and lid domain has also been solved for DnaK (275). This
structure, shown in Fig. 5A, reveals that the first half (depicted
in purple in Fig. 5A) has a �-sandwich structure that forms the
channel which interacts with peptide substrates (depicted in
yellow), followed by an alpha-helical region (depicted in blue)
that closes over the channel. This alpha-helical region, there-
fore, has been proposed to be a lid that, when in the appro-
priate conformation, traps bound substrates in the �-channel
(275). The crystal structures for mammalian Hsc70 ATPase
domain (60, 225) and the nuclear magnetic resonance (NMR)
structure for the substrate binding domain (159) reveal exten-
sive similarities with the prokaryotic DnaK, suggesting a con-
servation of the mechanism of function between diverse spe-
cies.

The ATP-bound form of Hsc70 is in a state of rapid flux
between binding and release of substrate (61, 62, 152, 172, 176,
201, 243). Structural evidence suggests that this is accom-
plished through the action of the extreme carboxyl-terminal lid
domain of Hsc70, which clamps shut or open, trapping and
untrapping substrates bound by the substrate binding domain
in response to completion of the ATPase cycle (Fig. 5A and 6)
(275). Upon J-protein stimulation of Hsc70-mediated ATP
hydrolysis, a global conformational change takes place in
Hsc70 (5, 6, 18, 112, 140), causing the lid domain to clamp shut,
thus trapping the substrate in a bound conformation (Fig. 5A
and 6).

DnaJ and its homologous proteins (J proteins) are cochap-
erone regulators that stimulate the ATPase activity of Hsc70
and promote substrate interactions with Hsc70s (reviewed in
references 25, 34, 45, 116, 117, and 213). Additionally, J pro-

teins have been implicated in altering the phosphorylation
state and inducing the degradation of substrates (229, 266). J
proteins have been implicated as components of the Hsp90
chaperone machine (34, 124, 204). All J proteins contain a
domain of approximately 70 amino acids that directly binds to
Hsc70, known as the J domain. NMR and crystal structural
analysis of the E. coli DnaJ, human HDJ1, polyomavirus large-
T-antigen, and SV40 T-antigen J domains reveals that the
structure of a J domain is composed of three or four alpha-
helices in which helices II and III form an antiparallel finger-
like projection held together by extensive hydrophobic inter-
actions (Fig. 7A) (9, 100, 108, 122). Helices II and III (depicted
in blue and green, respectively, in Fig. 7A) are linked by a
solvent-exposed loop consisting of amino acids HPD (depicted
in red in Fig. 7A and B). The HPD tripeptide motif directly
contacts Hsc70 and is universally conserved in all J proteins.

There are three broad classes of J proteins (34). (i) Type 1
proteins are those that contain a J domain, a glycine-phenyl-

FIG. 5. Domain structure of Hsc70. (A) The peptide binding do-
main of the E. coli Hsc70 protein DnaK (PDB code 1DKZ [275]). The
substrate binding domain is shown in purple, the lid (or “variable”)
domain is shown in blue, and the bound peptide substrate is shown in
yellow. (B) NMR structure of the J domain of E. coli DnaJ (PDB code
1BQZ [100]). The D35 residue is modeled with space filling in red to
highlight its important role in directly contacting the ATPase domain
of DnaK (see the text for more details). (C) The crystal structure of the
ATPase domain of DnaK is shown as four alpha-helical regions in
purple (PDB code 1DKG [89]). Residue R167 is modeled with red
space filling to underscore the importance of the surrounding region in
directly binding to residue D35 of the DnaJ J domain. (D) Domain
map of Hsc70, the ATPase (amino acids 1 to 386), and the substrate
binding (P [for peptide]) domains are shown in purple. The lid (L) do-
main is shown in blue.
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alanine-rich region, and a zinc finger-like domain, for example,
E. coli DnaJ and Saccharomyces cerevisiae Ydj1p. (ii) Type 2
proteins are those that contain a J domain and a zinc finger-
like domain, for example, human HDJ1 and E. coli CbpA. (iii)
Type 3 proteins are those that contain the J domain with
neither a glycine-phenylalanine-rich region nor a zinc finger-
like domain, such as T antigen, yeast Sec63, and mammalian
P58IPK. Within this subset, the J domain can be found at the
amino terminus, in the middle, or at the carboxyl terminus of
the protein. The functions of the glycine-phenylalanine and
zinc finger-like regions are not known, but it is possible that
they facilitate interaction with Hsc70 (34).

J proteins may regulate Hsc70 function by binding to sub-
strates of Hsc70 and recruiting and/or stabilizing the substrates
into a complex with Hsc70 (116). Tertiary complex formation
between Hsc70, a peptide substrate, and a J protein induces
maximal stimulation of the ATPase activity of Hsc70 (113, 129,
155). Hsc70-mediated hydrolysis of ATP “powers” the desired
“work” being performed, by changing the conformation of the
bound substrate and Hsc70 itself. Mutational analysis has re-
vealed that the J domain of J proteins is essential for the
induction of increased ATPase stimulation by Hsc70 (223, 247,
249). Structure and function as well as NMR perturbation
analysis demonstrated that the J domain directly contacts the
ATPase domain of Hsc70 through alpha-helix 2 and the HPD
motif (70, 77, 231). J proteins may also contact the carboxyl-
terminal region of Hsc70 since mutations of Hsc70 in the
substrate binding or the EEVD motif of the lid domain impair
productive DnaJ/Hsc70 interactions in various species (63, 113,
232).

One can visualize this basic Hsc70 ATPase mechanism (Fig.
6) accounting for multiple Hsc70 activities. For example, trans-
port of newly synthesized proteins into the lumen of the ER
requires a luminal Hsc70 homologue, BiP (153). Various mod-
els depict BiP as either anchoring peptides that pass through
the membrane pore via Brownian motion, or alternatively, BiP
may act as a motor that actively pulls peptides through the pore

(14). Either model requires the binding and release of peptide
substrates by BiP. Another example of the versatility of the
Hsc70 ATPase cycle is the disassembly of �O-�P-DnaB mul-
tiprotein complex at the origin of phage � replication (73, 139).
Phage � uses the E. coli host DnaK and DnaJ proteins to
assemble and disassemble the components of the replication
machinery necessary for phage DNA replication. Thus, the
role of Hsc70 in multiple contexts is to use the force generated
by ATP hydrolysis to bind, alter, and then release the substrate
so that Hsc70 is recycled to perform additional functions.
Clearly, disparate results can occur by the same basic Hsc70
chaperone mechanism—depending on the context in which the
Hsc70 is found.

There are several modulators of Hsc70 function that regu-
late different parts of the Hsc70 ATPase cycle (Fig. 6). For
example, in prokaryotes there is a nucleotide exchange factor
referred to as GrpE that promotes release of ADP and binding
of ATP by DnaK (171). The result is a GrpE-induced enhance-
ment of the steady-state ATPase activity of Hsc70. Thus far,
except in the mitochondria and chloroplasts, no structural ho-
mologues to GrpE have been identified in eukaryotes. How-
ever, functional homologues that foster the nucleotide ex-
change of Hsc70 from the ADP-bound to the ATP-bound form
have been found. These include isoforms of the Bag-1 protein.
Like GrpE, Bag-1 binds to Hsc70 and stimulates the exchange
of ADP for ATP, thus enhancing the steady-state ATPase
activity of Hsc70 (96, 228, 240); however, Bag-1 also serves to
negatively regulate some Hsc70 functions in cultured cells
(166). Additionally, the multiple isoforms of Bag-1 are in-
volved in different elements of hormone receptor regulation
(81).

Several regulators of Hsc70 function contain tetratricopep-
tide motifs that (in part) foster binding to Hsc70. These include
Hip, CHIP, and HOP (4, 49, 66). Hip stabilizes Hsc70 into the
ADP-bound high substrate affinity form and facilitates the
activation of hormone receptors (97, 183). CHIP performs the
opposite function by promoting the stabilization of the low

FIG. 6. The ATPase cycle of Hsc70. When bound to ADP, Hsc70 has a high substrate affinity; conversely when bound to ATP, Hsc70 displays
a weak affinity for peptide substrates. BAG-1 and GrpE are nucleotide exchange factors that promote the exchange of ATP for ADP, increasing
the steady-state ATPase activity of Hsc70. J domain-containing proteins (J proteins) stimulate the ATPase activity of Hsc70, which is inhibited by
CHIP. Hip promotes the stabilization of the ADP-bound form of Hsc70.

186 SULLIVAN AND PIPAS MICROBIOL. MOL. BIOL. REV.

 on S
eptem

ber 19, 2019 by guest
http://m

m
br.asm

.org/
D

ow
nloaded from

 

http://mmbr.asm.org/


substrate affinity ATP-bound form of Hsc70 (4). Additionally,
CHIP targets some proteins for proteasome-mediated degra-
dation (reviewed in reference 154). HOP is a bridging mole-
cule that fosters association of Hsc70 with Hsp90 (205, 216).
The roles of some of the regulators of Hsc70 function are
depicted in an Hsc70 ATPase cycle mechanistic model in Fig.
6. Note that these added points of regulation can allow for a
subtle fine-tuning of the Hsc70 chaperone motor machine.

There are many DnaJ and Hsc70 homologues in the cell. In
yeast there are more than 14 different Hsc70-like or DnaJ-like
proteins, some of which are localized to the same cellular
compartment (186). How then does a particular Hsc70 medi-
ate interaction with its proper binding J-protein partner? Ex-
periments in yeast have demonstrated that there is specificity
to the interaction between DnaJ-like proteins and Hsc70 fam-

ily members. The endoplasmic reticulum (ER) luminal DnaK
homologue BiP but not Ssa1p (a cytosolic Hsc70) can associate
with the J domain of the ER luminal chaperone Sec63p (153).
Ydj1p, a cytosolic J protein, stimulates the ATPase activity of
Ssa1p by 10-fold, but does so only 2-fold for BiP (153). When
the J domain of the ER luminal chaperone Sec63p was re-
placed with the J domain of either Sis1p or Mdj1p, these
cytosolic and mitochondrial J domains could not substitute for
the J domain of Sec63p. However, changing only three amino
acids in Sis1p restored function, presumably by fostering inter-
action with an ER luminal DnaJ homologue (200). Other ex-
periments indicate that the J domains from E. coli DnaJ and
other nonmitochondrial J proteins can substitute (to various
degrees) for the J domain of the mitochondrial luminal J pro-
tein Mdj1p when their expression is targeted to the mitochon-
dria (147). DnaJ restored wild-type function; Xdj1p, Ydj1p,
and Sis1p restored function to an intermediate level; and Scj1p
lacked the ability to restore viability and respiration. These
results suggest that while the basic mechanism of Hsc70–J-
protein function is conserved in the various orthologues, ele-
ments within and surrounding the J domain contribute the
specificity of interaction of particular chaperone partners. Sim-

FIG. 7. J domain structure. (A) NMR structures of the J domains
of E. coli DnaJ (PDB code 1BQZ [100]), human HDJ1 (PDB code
1HDJ [184]), polyomavirus T antigen (PYV) (PDB code 1Faf [9]) and
crystal structure of SV40 T antigen (SV40) (PDB code 1GH6 [122]).
Alpha-helix I is shown in yellow, alpha-helix II is shown in blue,
alpha-helix III is shown in dark green, and alpha-helix IV (DnaJ and
HDJ1 only) is shown in light green. The absolutely conserved HPD
tripeptide comprising the loop between helices II and II is shown in
red. (B) Amino acid alignment of DnaJ, HDJ1, PYV, and SV40 is
shown. The amino acids that make up the particular helices are indi-
cated by colored boxes. The absolutely conserved HPD tripeptide is
shown in red. (C) Amino acids of key SV40 T antigen mutants. Alpha-
helix 4 of the SV40 J domain is omitted to better show the location of
three distinct mutants of SV40 T antigen, representing three different
phenotypes (Table 1). The locations of the D44N point mutant and the
L19F,P28S double point mutant are indicated by highlighting these
residues and their side chains in cyan. The region that corresponds to
the small deletion mutant, �17–27, is shown in black.
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ilar approaches, when applied to other Hsc70/DnaJ-like pro-
teins, may provide an understanding of the determinants of
specificity in chaperone interactions.

T Antigen Is a J-Protein Chaperone

Many different type of viruses, including bacteriophages,
utilize molecular chaperones for some part of their viral life
cycle (reviewed in reference 235). Some viruses such as bacte-
riophage � utilize only host-encoded chaperones, while others,
like SV40, encode virus-specific chaperones. Multiple lines of
evidence confirm that SV40 T antigen is a functional molecular
chaperone J protein.

First, there is sequence similarity between the amino-termi-
nal region of the SV40 T antigens and the conserved residues
of the type 3 DnaJ-like proteins including the absolutely con-
served HPD loop of the J domain (Fig. 7) (33; W. L. Kelley and
S. J. Landry, Letter, Trends Biochem. Sci. 19:277–278, 1994).
Recently, the crystal structure of SV40 T antigen bound to the
A and B domains of the pRB protein has been reported (122).
SV40 T antigen shares 44% identity in the J-domain region
with polyomavirus T antigen, and the NMR structural deter-
mination of the first 79 amino acids of polyomavirus T antigen
demonstrates that it bears extreme similarity to the T-antigen
J domain (Fig. 7A) (9). Consistent with the NMR structures of
DnaJ, HDJ1, and polyomavirus T antigen, the SV40 T antigen
is composed of a finger-like projection of two antiparallel he-
lices (Fig. 3). Like the polyomavirus T antigen, the first alpha-
helix of SV40 T antigen is longer than the nonpolyomavirus J
domains, suggesting the possibility of additional functions in
the extreme amino-terminal region. Interestingly, alpha-helix 4
curls back in the opposite direction of other known nonpoly-
omavirus J domains and makes contacts with alpha-helix 2 and
the HPD loop. The extended long loop connecting alpha-
helices 3 and 4 is also novel to T antigen. Not surprisingly, the
conserved residues of the LXCXE motif of T antigen directly
contact the B domain of pRB in a manner analogous to the
papillomavirus E7 peptide (Fig. 3). Interestingly, helices 3 and
4 of T antigen make additional hydrogen bond contacts with
pRB. Because regions of T antigen that contact Hsc70 (HPD
motif) are proximal to the regions of T antigen that bind to
pRB, this structure supports the model that T antigen serves as
a bridge to direct the action of Hsc70 to RB-E2F complexes
(122).

Second, functional studies involving domain-swapping ex-
periments show that the J domain of T antigen can functionally
substitute for the J domains of E. coli DnaJ in a phage � growth
assay (118) and for Ydj1p in a yeast viability assay (S. Fewell
and J. L. Brodsky, unpublished observation). Mutation in the
amino-terminal region of T antigen in residues conserved with
other J proteins renders T antigen defective for SV40 replica-
tion, transformation, and assembly. These mutants fail to sub-
stitute for the DnaJ J domain in the E. coli complementation
assay (J. V. Vartikar and W. L. Kelley, unpublished observa-
tions). Furthermore, the J domain of human J proteins Hsj1
and DnaJ2 can functionally substitute for the T-antigen J do-
main in DNA replication, albeit DnaJ2 is less efficient than
Hsj1 in this activity (24).

Third, biochemical evidence confirms that T antigen func-
tions as a J domain in multiple assays, including stimulating theB
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ATPase activity of bovine Hsc70 and Ssa1p (cytosolic yeast
Hsc70) (223), promoting the release of a bound substrate from
Ssa1p (223), and binding to Hsc70 (24, 198, 209, 234, 236).
Thus, structural, functional, and biochemical assays demon-
strate with clarity that T antigen contains a functional J do-
main.

FUNCTIONS OF T-ANTIGEN CHAPERONE ACTIVITY

Mutational analysis has demonstrated that the T-antigen J
domain is essential for multiple viral activities, including viral
DNA replication, transformation, transcriptional activation,
and virion assembly (Table 1). Each of these topics is discussed
in detail below.

Replication

Early mutational analysis demonstrated the essential role for
an intact amino terminus of T antigen for SV40 replication in
tissue cell culture models (178). Small-deletion mutants and
point mutants of T antigen in residues highly conserved among
J domains are defective for replication by 20-fold (174). Fur-
thermore, a chimeric T antigen, HsjT, in which the T-antigen
J domain is replaced with the human Hsj1 J domain, is func-
tional for replication (24). Thus, it is evident that J-domain
function is required for SV40 DNA replication in a cellular
context.

Currently the role of the J domain of T antigen in DNA
replication is unknown, and two different explanations are pos-
sible. First, the J-domain requirement may be direct. In such a
model, the T-antigen J domain directly recruits the activity of
an Hsc70 homologue to rearrange the necessary replication
machinery to drive DNA replication in a manner analogous to
phage � DNA replication. Second, the J domain may be indi-
rectly required. There are several ways to envision this hypoth-
esis. The J domain may be required to recruit a cellular Hsc70
homologue activity to disrupt chromatin complexes which are
inhibitory to DNA replication in the cellular context but absent
in the noncellular in vitro assays. Recent evidence demonstrat-
ing a possible inhibitory role for pRB-E2F complexes at origins
of replication (120) lends credence to this hypothesis. Alter-
natively, the J domain may be indirectly required for replica-
tion to drive the production of a necessary cellular enzyme(s)
required for DNA synthesis such as DNA polymerase � or
thymidine kinase. In support of these indirect hypotheses, in
vitro assays in which the J domain of T antigen is mutated (43;
P. G. Cantalupo and J. M. Pipas, unpublished observations), or
even completely deleted (255), still replicate SV40 DNA in
noncellular replication assays (albeit at a partially reduced
level) (255). Furthermore, Hsc70 (or homologues) is not a
major required component in a reconstituted noncellular in
vitro replication assay (263). Finally, addition of purified Hsc70
to an in vitro replication reaction mixture does not enhance the
replication efficiency (Cantalupo and Pipas, unpublished ob-
servations). Surely there are other ways to envision an indirect
role for the J domain in replication; however, the actual mech-
anism remains undetermined, and only future experimentation
will elucidate whether the J-domain requirement is direct, in-
direct, or some combination of both.

Role of J Domain in pRB Complexes

Using the powerful technique of expressing wild-type or
mutant T antigens in MEFs null for various pRB family mem-
bers, it was demonstrated that the J domain and pRB-binding
motif are required to effect p130 and p107 to elicit cellular
growth to a high density (38, 229). Furthermore, T antigen
alters the phosphorylation state and decreases the half-life of
p130 in established rodent cells (229). Down-regulating p130
function is essential for T-antigen-induced tumorigenesis,
since overexpression of p130 inhibits the tumorigenic effects
induced by JCV T antigen (99).

Because the J domain is required in cis with the pRB-bind-
ing motif to elicit transformation (223), a model in which the
chaperone activity of the J domain directly acts on pRB-tran-
scription factor complexes has developed. In this model (Fig.
8A) the J domain acts to recruit Hsc70 to the pRB-transcrip-
tion factor complex (in this case E2F, but could easily apply to
others such as MyoD or c-Abl) (16). The action of Hsc70 ATP
hydrolysis induced by the J domain of T antigen induces the
disruption of pRB-E2F, either directly by altering the confor-
mation of pRB or E2F (Fig. 8A) or by recruiting cellular
factors to the complex (Fig. 8B). Thus, free E2F is liberated
and transcription of the genes necessary for viral replication
proceeds.

In support of this model, it has been shown that the J
domain is required in cis with the pRB-binding motif to up-
regulate exogenous promoters containing multiple E2F bind-
ing sites (209, 269). J-domain function is conserved among
other polyomavirus family viruses, because both polyomavirus
and BKV require a functional J domain to stimulate E2F-
dependent transcription (88, 209). Furthermore, lysates made
from cells not expressing T antigen or those expressing J-
domain mutants of T antigen contain a p130-E2F-4 DNA bind-
ing complex that is not present in cellular lysates from cells
expressing wild-type T antigen (88, 236, 269). These data are
consistent with the chaperone-induced disruption of p130 from
E2F.

However, there exists a caveat to interpreting the above
data. Since T antigen is a powerful mitogen with multiple
growth-inducing activities, it is possible that the J domain is
required to drive the cells to cycle in a manner that indirectly
disrupts pRB-E2F complexes. For example, several different
mitogens will induce free E2F and transcriptional activity even
though they are not known to directly bind to the pRB family
(83, 92, 169, 258). Biochemical evidence, however, clearly dem-
onstrates that T antigen has the capability to disrupt pRB-E2F
family complexes in vitro (233). When a lysate from cells that
overexpressed p130-E2F complexes was incubated with T an-
tigen, p130 remained bound to E2F-4. However, inclusion of
exogenous Hsc70 and an ATP regeneration system in the re-
action released a portion of the E2F from p130. These results
indicate that disruption of p130-E2F requires a functional J
domain. The released E2F is capable of binding DNA contain-
ing an E2F consensus-binding site, consistent with its role as a
transcription factor. Interestingly, the chaperone-mediated re-
lease of pRB family members from E2F is more efficient (ap-
proximately sixfold) in the presence of an unknown protein-
aceous factor (designated factor C, for cellular protein) (233;
C. S. Sullivan and J. M. Pipas, unpublished observation). Be-
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cause the release reaction is enhanced by Hsc70 and ATP, it is
possible that factor C is a cochaperone such as a Hip or a Bag.
Alternatively, it is known that the phosphorylation state of
pRB and E2F family members changes as cells proceed
through the cell cycle and divide (52, 148). Phosphorylation of
pRB prevents its association with E2F, and phosphorylation of
E2F prevents its ability to bind to DNA in vitro (50, 51).
Therefore, another plausible possibility is that factor C is a
phosphatase or a kinase that requires Hsc70 to potentiate the
disruption of the pRB-E2F family complex. In this model, T
antigen acts as a switch that uses its chaperone activity to
propagate some secondary effector such as a kinase to p130 or
E2F-4 (Fig. 8B). In support of this notion, the J domain of T
antigen is required to alter the phosphorylation state of p130 in
cultured cells (229). An in vitro system of defined components
will greatly enhance the testing of these models.

Non-J-domain-mediated T-antigen effects on the pRB fam-
ily. pRB has multiple functions including repressing the activ-
ities of E2F and other transcription factors (see section “pRB”
of this review). The role of the J domain on non-E2F tran-
scription factors remains to be determined. Consistent with the
multifaceted growth regulation mechanisms that pRB pos-
sesses, T antigen can alter pRB cellular growth regulation in a
J-domain-dependent (see above) or J-domain-independent
manner. M. J. Tevethia and coworkers demonstrated that fus-
ing the pRB-binding motif to a heterologous site on a carboxyl-
terminal T-antigen fragment (amino acids 128 to 708) enabled
this fragment to induce cells to grow to a high density (242).
Therefore, the pRB-binding motif can contribute some
growth-enhancing function(s) without the presence of a J do-
main. In an established rat embryo fibroblast cell line, the
T-antigen J-domain mutant �17–27 induces expression of B-
myb mRNA as well as wild-type T antigen, which the authors
interpret as a productive interaction with p130 (182). Sheng
and coworkers (210) have shown that the polyomavirus T an-
tigen induces apoptosis in C2C12 myoblast cells and that this
depends on an intact pRB-binding motif (LXCXE), but not a
J domain, since mutant H42Q induces apoptosis nearly as well
as the wild type. In contrast, SV40 T antigen prevents apopto-
sis in a neural astrocyte precursor cell line upon growth factor

withdrawal, and this activity requires both the pRB-binding
motif as well as the J domain of T antigen (215). Therefore,
pRB possesses multiple activities intimately associated with the
balance of cell growth and death which T antigen can disrupt—
some in a J-domain-independent manner.

In another example, wild-type T antigen and J-domain mu-
tants of T antigen restore growth to a cell line that is growth
inhibited by the conditional expression of p53 (74, 185). The
pRB-binding motif is required for this activity, but the J-do-
main mutant H42Q functions as well as the wild type. Inter-
estingly, a deletion mutant of the entire J domain (�2–82)
compromises the ability of T antigen to inhibit growth arrest by
80%, which the authors attribute to poor expression levels of
�2–82 (74). The small-deletion mutant �17–27 is not func-
tional in this assay, reflecting a more severe phenotype than
point mutants in the J domain (see “Transformation” section
below). Thus, while it is clear that the J domain is required to
disrupt E2F from pRB, it has yet to be determined what ac-
tivity the LXCXE motif possesses independent of the J do-
main. One interesting hypothesis is that the LXCXE motif by
itself is able to disrupt HDACs from pRB (74, 210), thereby
reducing the ability of pRB to inhibit transcription. There is
support for such an idea since peptides corresponding to the
LXCXE motif of T antigen inhibit or disrupt complex forma-
tion between HDAC-1 and pRB (149), but whether or not this
occurs in the context of the cell remains to be determined.
Another possibility is that the LXCXE motif or amino acid
sequences surrounding it interact with some other cellular tar-
get that affects growth control independent of T antigen’s
actions on pRB.

Role of J domain in transactivating E2F promoters. Multi-
ple studies of polyomavirus, BKV, and SV40 T antigen dem-
onstrate that the J domain and pRB-binding motif of T antigen
contribute to alleviating repression of E2F transactivation (32,
74, 88, 134, 209, 210, 269). These studies are performed by
transiently transfecting reporter constructs containing an E2F
site(s) upstream of a reporter gene in the context of a minimal
(E2F site upstream of a TATA box) or a portion of a physio-
logical promoter such as the E2F-1 promoter. In five of the six
reports, a J-domain point mutant is diminished in inducing the

FIG. 8. Chaperone models for disruption of pRB-E2F family complexes. The multiple pRB and E2F family members are represented by “RB”
and “E2F.” (A) In this model, T antigen recruits Hsc70 to pRB to directly act as a molecular machine that pries apart the pRB-E2F multiprotein
complexes. (B) In this model, T antigen recruits Hsc70 to a multiprotein complex that requires the action of an additional unknown cellular protein
(C [for cellular factor]) to disrupt pRB-E2F complexes (see the text for details). Factor C may posttranslationally modify pRB or E2F (denoted
with asterisks) after they are separated from each other by the action of Hsc70. An alternative explanation is that factor C may enhance the activity
of Hsc70 directly.
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transcriptional activity of E2F relative to wild type (32, 74, 88,
134, 209, 210, 269). Additionally, J-domain mutants are con-
sistently less defective than pRB-binding mutants in these
assays. This suggests that the LXCXE pRB-binding motif con-
tains additional activities that alleviate pRB-mediated repres-
sion of E2F family members in a J-domain-independent fash-
ion. An alternative interpretation is that the J-domain point
mutants assayed are “leaky,” thus retaining partial J-domain
function. The J domain and LXCXE pRB-binding motif also
act to alleviate the trans-repression activity of pRB that is
independent of binding to E2F. This was demonstrated by
experiments in which the repression activity of a fragment of
pRB (containing the trans-repression domain) which cannot
bind to E2F, is alleviated by T antigen (74). This activity was
dependent on an intact LXCXE motif and J domain. These
data suggest that in addition to alleviating pRB-mediated re-
pression of E2F, both the J domain and LXCXE motif com-
bine to alleviate pRB transcriptional repression that is inde-
pendent of disrupting pRB-E2F complexes. Using a
physiological cyclin A promoter with the E2F binding sites
mutated, Sheng et al. demonstrated that LXCXE mutants
transactivate cyclin A as well as wild-type T antigen (210). In
this assay, a J-domain mutant is unable to transactivate cyclin
A. These results suggests that the J domain has the ability to
regulate some promoters independent of liberating E2F from
pRB family repression.

The question arises as to why the J domain is required to
transactivate promoters containing E2F to various degrees,
ranging from no requirement with J-domain mutants transac-
tivating reporter constructs as well as wild-type T antigen (32)
up to J-domain mutants that are 10-fold defective relative to
wild type (134). There are several experimental parameters
that may account for at least some of these differences. Be-
cause many of these studies depend on transient transfections,
proper normalization to account for discrepancies in transfec-
tion efficiencies must occur. Additionally, in the six studies (32,
74, 88, 134, 209, 210, 269), four different cell types were used,
making it plausible that each may have differing pRB/E2F or
chaperone levels. Finally, there is some suggestion that the
stage of cell cycle division of the cells affects the degree to
which the various domains of T antigen are required to trans-
activate E2F (210).

Transformation

There are at least three regions of T antigen required for
cellular transformation, including the carboxyl-terminal re-
gion, the LXCXE pRB-binding motif, and the J domain (28,
111, 196, 223, 224, 244, 268, 273). The J domain is required in
cis with both the pRB-binding (LXCXE) motif and the car-
boxyl terminus to transform REF52 cells (223). Furthermore,
as noted in previous sections, the J domain is required in cis
with the pRB-binding motif to transactivate E2F-responsive
promoters (209). These findings suggest that the J-domain
function must act on pRB complexes bound by the same mol-
ecule of T antigen. In addition, some other binding target of
the carboxyl terminus is affected by J-domain activity (223). A
likely possibility for the carboxyl-terminal transforming activity
is binding to p53; however, studies suggest that other trans-
forming activities in addition to p53 binding reside in the

carboxyl terminus of T antigen (28, 196). Therefore, the J
domain may also function on an as-yet-unidentified T-antigen
carboxyl-terminal activity.

Different J-domain mutants displayed various degrees of
penetrance for transformation ability (Table 1). The small-
deletion mutant �17–27 (dl1135) (diagrammed in Fig. 7C) is
100% defective for transformation, while the D44N mutant
(Fig. 7C), which contains a mutation in the highly conserved
HPD motif, is capable of inducing transformation, albeit in a
partially defective manner, inducing only 50% of the foci that
wild-type T antigen does.

What can account for this discrepancy? There are at least
three possible explanations. First, it is possible that the D44N
mutation only partially disrupts J-domain function while the
�17–27 mutation completely abolishes activity. The D44N mu-
tation is analogous to the E. coli DnaJ mutant D35N, which is
defective for J-domain function. A suppressor mutation in
DnaK of the E. coli D35N mutant is R167H (Fig. 5B) (231).
Suh et al. have shown that the cleft region surrounding R167 is
a likely binding site for the HPD and helix 2 of the J domain
(shown in Fig. 5C). It is reasonable to infer that the J domain
of T antigen contacts an analogous cleft domain in Hsc70 and
possibly other mammalian DnaK homologues. Extending this
inference, the D44N mutation likely diminishes stimulation of
Hsc70 activity in a manner analogous to that of the phenotypic
null E. coli D35N mutant. Furthermore, studies using D44N
confirm that it is defective for several chaperone-related activ-
ities, including binding to Hsc70 (234), stimulating Ssa1p ATP
hydrolysis in a single turnover assay (although D44N still has
approximately twofold more activity than a control mutant
lacking the entire J domain) (233), and functioning for the E.
coli DnaJ J domain in a phage � replication assay (Vartikar
and Kelley, unpublished observation). These data suggest that
D44N retains little, if any, chaperone activity.

Second, it is possible that �17–27 causes a gross structural
abnormality in the T-antigen molecule, such that it would
interfere with the other more carboxyl-terminal transforming
functions of T antigen including binding to the pRB or p53
family. This seems unlikely, because purified �17–27 is func-
tional in numerous biochemistry assays such as stimulation of
DNA replication, double hexamer assembly, ATPase activity,
helicase activity, and ori unwinding, suggesting that it has struc-
tural integrity (43). Furthermore, �17–27 can bind to both p53
and pRB (56, 151, 178) and induce lymphomas when expressed
in mice (238). However, it has been suggested that the �17–27
may be less stable than wild-type T antigen (151). Thus, while
maintaining global structural integrity, lower steady-state lev-
els in some cells could account for the more severe phenotype
of �17–27, independent of its J-domain activity.

Third, it is possible that �17–27 abolishes another trans-
forming function in the amino terminus in addition to the
J-domain activity. In support of this idea, Cavender et al. have
shown that the amino-terminal first 82 amino acids convey an
essential, independent function that does not require binding
to pRB to transactivate a polI-dependent promoter (29). Ad-
ditionally, mutants in the polyomavirus J domain in the ex-
treme amino-terminal region are defective for transformation
induced by middle T antigen (44), even though the NMR
structure does not support a role for these residues in contact-
ing Hsc70 (9). The amino terminus of T antigen has a stretch
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of amino acids with weak amino acid similarity to the con-
served CR1 of adenovirus E1A (177). The CR1 of E1A is
required to bind to p300 (250) and to inhibit pRB activities in
vitro (58, 104). Because both E1A and T antigen bind to pRB
and induce transformation, it has been proposed that the CR1-
like region of T antigen may share functionality with the cor-
responding sequence in E1A (265). The �17–27 mutation de-
letes portions of both the CR1-like region as well as a part of
alpha-helix 2 of the J domain. Thus, it is possible that this
mutant targets a CR1-like function as well as a J-domain func-
tion of T antigen. However, the crystal structure of the SV40
large T antigen predicts that the CR1-like region of SV40 is
buried in the hydrophobic core of alpha-helices 2 and 3 of the
J domain (Fig. 7C), which makes it difficult to envision a
separate transforming activity for this exact region (amino ac-
ids 17 to 27). The �17–27 mutant, however, could abolish
additional transforming activities in the extreme amino termi-
nus of SV40 T antigen, similar to that of polyomavirus middle
T antigen. Notice in Fig. 7 that the J domains of polyomavirus
and SV40 T antigens contain extra conserved sequences amino
terminal to the start of alpha-helix 1 of the nonpolyomavirus J
domains. Therefore, it is possible that the �17–27 mutant al-
ters 2 independent functions: the J domain and a transforming
function amino terminal to amino acid 17. Construction of
mutants in the first 17 amino acids of SV40 T antigen should be
informative regarding this possibility.

Further complicating matters, the degree of the J-domain
transforming contribution is dependent on the assay used to
measure cellular growth deregulation. The cis requirement for
the J domain and pRB-binding motif to transform REF52 cells
was determined using crystal violet staining for dense focus
formation. In this assay, cells are allowed to grow for approx-
imately 6 weeks. As mentioned above, �17–27 is totally defec-
tive for focus formation, but D44N is only partially defective,
forming approximately 50% the number of foci. However,
when D44N is examined in an assay with growth to high den-
sity, it is completely defective (229). This assay is performed on
a much shorter time scale (approximately 2 weeks) than the
dense-focus assay and therefore likely measures different as-
pects of cellular growth control. Importantly, another mutant
in the conserved loop of the J domain, H42Q, is also defective
at inducing cellular growth to high density (229). However, the
D44N mutant induces growth in soft agar as well as wild-type
T antigen (229). Furthermore, TN136, a fragment of T antigen
consisting of the J domain and the pRB-binding (LXCXE)
motif, is capable of inducing foci in C3H10T1/2 cells (at a
much reduced level relative to the wild type) but is unable to
induce foci in REF52 cells (223). Interestingly, unlike the full-
length situation, a D44N mutant in the context of TN136 is
completely defective at inducing foci in C3H10T1/2 cells. The
above data point out the varied requirements for J-domain
function depending on cell type and the transformation assay
employed. Unlike the J domain, a functional pRB-binding
motif of T antigen is required to induce transformation in most
assays, including induction of foci in REF52 and growth in soft
agar. Interestingly, the fact that the J domain is required for
transformation of some cell types in the context of TN136, but
not full-length T antigen, suggests that the carboxyl-terminal
domain of T antigen may encode transforming activities re-

dundant with the J domain. Work from Cavender et al. sup-
ports such a notion (28).

Role of J domain in carboxyl-terminal transforming func-
tions. The J domain is required in cis with some as-yet-un-
known carboxyl-terminal function for transformation. This was
established using the TN136 amino-terminal fragment of T
antigen and �17–27 which were unable to complement each
other for full transformation of REF52 or C3H10T1/2 cells
(223). As mentioned previously, the carboxyl-terminal function
of T antigen that is required is unknown, but p53 is a likely
candidate. However, J-domain mutants of T antigen function
as well as the wild type in blocking p53 DNA binding in vitro
(P. A. Carroll and J. M. Pipas, unpublished data), suggesting
that the J domain has no role in this activity of T antigen.
Another possible target of the J-domain function is the p300
protein, whose binding has been mapped to the carboxyl ter-
minus of T antigen (143). Mutants in the amino terminus of T
antigen are defective for altering the phosphorylation state of
p300 and inhibiting its transactivation activity (54). This sug-
gests that a carboxyl-terminally bound p300 substrate is a po-
tential target for the J-domain activity. Alternatively, since p53
and p300 form a complex, it is possible that the J domain may
be required to somehow alter this complex. Finally, it is pos-
sible that there are still undiscovered transforming functions in
the carboxyl-terminal regions. Consistent with this idea, coex-
pression of TN136 and DD53, a dominant negative mutant of
p53, is transformation defective compared to the p53 binding-
competent full-length T antigen (196). Therefore, it is formally
possible that the J domain acts independently of p53 and p300
on some other carboxyl-terminal function.

It should be noted that the J-domain function can be com-
plemented in trans in several assays including induction of
hepatic tumors and transactivation of a ribosomal promoter (7,
29). Why the J domain is required in cis for some activities
(such as transformation of REF52 cells and transactivation of
E2F responsive promoters) (209, 223) and not others is un-
known. One possible determinant may be whether J-domain
mutants of T antigen can functionally oligomerize with mu-
tants of T antigen that contain a wild-type J domain. However,
Cavender et al. argue that while oligomerization may be re-
quired for trans complementation, it is not sufficient for trans-
activation, since mutants that contain the regions of T antigen
sufficient for oligomerization fail to complement in trans (29).
Future experimentation is required to understand the differing
cis and trans J-domain requirements in these multiple assays.

J Domain and Virion Assembly

SV40 virions are composed of three viral proteins, VP1,
VP2, and VP3, which form an icosahedral structure of 72
pentamers of VP1, with each pentamer associated with one
polypeptide of either VP2 or VP3 (141). The mature virion
encapsulates the viral DNA molecule and has a sedimentation
coefficient of 240S in a sucrose density gradient (42). Devel-
oping virions composed of chromatin and some VP polypep-
tides have less-dense sedimentation coefficients ranging be-
tween 100 and 150S (221, 222). Both genetic and biochemical
data indicate that a wild-type T antigen is required for virion
assembly for at least two independent steps of virion matura-
tion. Some T-antigen mutants in either the extreme carboxyl-
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terminal host range (HR) specificity function or the J domain
(L19F,P28S) replicate DNA and produce VP1 to -3 but fail to
assemble mature virions (221, 222). Both mutants produce
immature capsid intermediates that migrate at unique lower
densities in a sucrose gradient. When these mutants are ex-
pressed in the same cell, the HR and L19F,P28S mutants
complement each other to infect cells as well as wild-type virus,
suggesting that they code for two separate functions (175).

The L19F,P28S double point mutant contains substitutions
in both the second and third alpha-helices of the J domain
(Fig. 7C). L19 has a functional group that protrudes into the
hydrophobic core of the J domain, making contacts directly
with the functional group of M30 of the third alpha-helix (Fig.
7C). Thus, the SV40 L19F,P28S mutant alters the stability of
the interactions between the second and third helices of the J
domain. Unlike other J-domain mutants, L19F,P28S replicates
DNA to near wild-type levels (175) but is defective for virion
assembly. The ability of other J-domain mutants that do not
replicate their DNA or express the VP virion proteins has not
been determined.

The virion assembly defect of the T-antigen HR or
L19F,P28S mutants may be indirect, for example, due to the
failed induction of a cellular peptide that is necessary for
proper virion assembly. Alternatively, these mutants may im-
plicate a direct role of T antigen in virion assembly due to the
inability of T antigen to physically function in the assembly
process. For L19F,P28S there is some evidence that the defect
may be direct, since Hsc70 binds to VP1 (197). This links, at
least circumstantially, the J-protein/Hsc70 chaperone machin-
ery to the process of virion assembly.

J Domain and Transactivation

T antigen is both a transactivator of the SV40 structural late
genes and a repressor of the SV40 early genes (42, 85, 114,
115). Furthermore, T antigen is a promiscuous transactivator
of polymerase I (PolI), PolII, and PolIII (29, 274). Multiple
domains of T antigen are required to induce transactivation,
including the J domain (29, 274). Cavender et al. have shown
that a J-domain mutant (�2–82) is defective for transactivation
of a PolI ribosomal promoter but can be complemented in
trans by a transactivation-defective carboxyl-terminal mutant
(dl400). In these assays, an intact pRB-binding (LXCXE) mo-
tif is not required for T-antigen-induced transactivation (29,
274). This suggests that the J-domain activity required for
transactivation is different from the J-domain activity required
to disrupt pRB/E2F complexes which requires a functional
pRB-binding site. T antigen associates with multiprotein com-
plexes at promoters; perhaps the J domain is required to re-
arrange such complexes.

J Domain and Tumorigenesis

Ectopic expression of T antigen results in tumors in numer-
ous rodent models—including brain, breast, bladder, choroid
plexus, pancreas, intestinal, lymphatic, and liver (7, 36, 76, 78,
99, 138, 187, 241)—and may be linked to human tumors as well
(see Introduction). The function of the T-antigen J domain
during in vivo tumorigenesis has not been studied in detail;
however some conclusions can be made.

A fragment of T antigen that expresses the J domain and
pRB-binding motif (N1 to 121) is sufficient to induce pancre-
atic and hepatic tumors as well as full-length T antigen, sug-
gesting that binding to p53 is not required to induce tumors in
these systems (7, 241). N121 induces slow-growing tumors in
the choroid plexus (36). These tumors become fast growing
(similar to ones induced by expression of full-length T antigen)
if the mice are crossed into a p53-null mouse (237), suggesting
that in these cells, the role of the T-antigen J domain and
pRB-binding motif is to drive the cells into a state of hyper-
plasia but the role of the p53 binding domain is to inhibit
p53-dependent apoptosis. Furthermore, if N121-expressing
mice are crossed to an E2F-1�/� background then apoptosis
induction is greatly reduced (173). This suggests that a frag-
ment of T antigen containing the J domain and pRB-binding
motif liberates E2F from pRB family members in vivo which
induces p53-dependent apoptosis. In another transgenic mu-
rine model system, full-length T antigen induces dysplasia (on-
set at approximately 6 weeks of age) when expressed with the
oncoprotein-activated K-ras in the villi of the intestine, but
expression of N121 with activated K-ras induces only hyper-
plasia (123). If the N121 mice are crossed into a p53-null
background, they do not progress to a further growth deregu-
lated state (C. M. Coopersmith and J. Gordon, unpublished
observation) as is the case in the choroid plexus model. This
suggests that T antigen possesses transforming functions in its
carboxyl terminus other than inactivating p53 (see above). The
differing requirements for inactivation of p53 in the various
model systems underscore the tissue specific effects of T-anti-
gen expression.

The J-domain mutant �17–27 is defective at inducing tu-
mors in the choroid plexus, liver, intestine, and pancreas but
does induce T-cell lymphomas (7, 187, 238). In contrast, the
L19F,P28S J-domain mutant is able to induce choroid plexus
tumors (36). The basis for the differing abilities of �17–27 and
L19F,P28S to induce choroid plexus tumors is not known; one
possibility is that L19F,P28S only partially inhibits J-domain
function (see discussion on �17–27 and L19F,P28S in sections
above). To our knowledge, other J-domain mutants have not
been studied in vivo; therefore a comprehensive understanding
of the J-domain function during in vivo tumorigenesis will
require the construction of additional transgenic animals.

Transplantation of ovarian carcinoma cells that overexpress
the Her2 gene into mice results in tumors (144). Expression of
J-domain-containing amino-terminal fragments of T antigen in
these cells inhibits tumor growth (144, 264). This effect is
observed if small t antigen, the N121 amino-terminal fragment
of large T antigen, or the N1–82 fragment consisting solely of
the J domain is expressed. The mechanism of how T antigen
inhibits tumor growth is unknown; however, the expression of
J-domain-containing fragments of T antigen induces transcrip-
tional repression of the Her2 and other promoters (144, 251).
Because expression of the J domain by itself has dominant
negative effects on the transactivation of an E2F reporter con-
struct (209), it is possible that the J domain may be acting as a
dominant negative for some chaperone requirement for Her2
transactivation. Further experiments that use point mutations
in key J-domain residues would demonstrate if this effect is
truly J domain dependent.
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Role of the J Domain in Other T Antigens

There are three SV40 splice variants that contain the J
domain in their amino terminus, which compose the T anti-
gens: large T antigen, small t antigen, and 17kT antigen (Fig.
1). Several other alternatively spliced T antigens are made by
the various polyomaviruses; however, the role of the J domain
in the function of these proteins has not been studied in detail.
Small t antigen is made by most polyomaviruses, can stimulate
the ATPase activity of Hsc70, and is involved in down-regulat-
ing the phosphatase activity of protein phosphatase 2A (193,
223). Middle T antigen is not encoded by SV40 but is made by
a subset of the polyomaviruses including polyomavirus itself.
Middle T antigen is a transforming protein that activates cy-
toplasmic signal transduction proteins (168). Mutations in the
middle-T-antigen J domain render it defective for inducing
transformation (44).

In addition, there are several different T antigens made that
demonstrate similarity to amino-terminal fragments of large T
antigen. These include tiny t antigen (polyomavirus), 17kT
antigen (SV40), and the T
 T antigens of JCV: N135, N136,
and N165. Polyomavirus tiny t is comprised of the J domain
plus an additional unique six amino acids, has a short half-life
during infection, and stimulates the ATPase activity of Hsc70
(188). Its function is unknown. SV40 17kT antigen is com-
prised of the first 131 amino acids of large T antigens plus an
additional 4 unique amino acids. 17kT antigen is expressed at
low levels during infection but is able to transform rat fibro-
blast cells upon plasmid-mediated expression (270). The JCV
T
 molecules are unique in that they are expressed at higher
levels with a longer half-life than tiny t or 17kT. All three T

proteins have the same first 132 amino acids as JCV large T
antigen and contribute to infectivity (246). The carboxyl ter-
minus of N165 contains the HR specificity domain in common
with the extreme carboxyl terminus of large T antigen. In
addition to the common 132 amino acids, N136 and N135 each
have unique amino acids at their carboxyl terminus (four and
three, respectively). A similar construct engineered in SV40,
TN136, can transform cells (223); therefore it is likely that JCV
N136 and N135 proteins alter cellular growth properties during
infection. Consistent with this, the three T
 proteins can bind
to the pRB family members (11). The exact role of the J
domain in the function in these peptides resembling the amino
terminus of SV40 large T antigen awaits future functional
characterizations and mutational analyses.

SPECIFICITY OF T-ANTIGEN J-DOMAIN
INTERACTIONS

The T-antigen J domain can functionally replace the endog-
enous J domain of both E. coli and yeast J proteins in viability
assays (118; Fewell and Brodsky, unpublished observation).
Furthermore, heterologous T-antigen chimeras containing J
domains from human proteins (Hsj1, DnaJ2) are functional for
viral activities, including DNA replication and inducing cellu-
lar growth to a high density (24, 229). Interestingly, chimeric T
antigens containing the J domains of E. coli DnaJ or yeast
Ydj1p are defective for several SV40 activities, including the
ability to liberate E2F from p130, induce transformation, and
replicate viral DNA (Table 1) (236). Thus, mammalian but

neither the yeast nor E. coli J domains contain structural ele-
ments that allow for productive association with the appropri-
ate mammalian Hsc70. Conversely, the T-antigen J domain can
functionally interact with the yeast and E. coli Hsc70s.

The first alpha-helix of T antigen is longer than all other
known J domains (Fig. 7); therefore, it may contain specific
structural determinants for T-antigen function that are not
encoded by other J domains. However, one must still account
for the functionality of T-antigen chimeras containing human J
domains. One possibility is that the human J domains possess
similar specificity elements (for example similar charged resi-
dues or length) with the T-antigen J domain. In support of this,
the NMR structure of the polyomavirus J domain shares
greater similarity with the structure of HDJ1 than E. coli DnaJ
(9). However, sequence gazing fails to produce any sequence
similarities among Hsj1, DnaJ2, and SV40 that are not present
in yeast or E. coli J domains. It is possible that the human J
domains have only some of the T-antigen-specific elements,
rendering T-antigen chimeras containing these J domains only
partly functional. In support of this notion, the chimeras con-
taining human J domains are not as fully active as wild-type T
antigen for induction of cellular growth to a high density, DNA
replication, and the synergistic transactivation of the Oct1/scip
transcriptional complex (24, 218, 229). These observations sug-
gest that, for certain T-antigen functions, human J domains
provide only some of the specific elements that the T-antigen
J domain possesses. Thus, the key residues that mediate inter-
action of J proteins with Hsc70 are evolutionarily conserved,
but additional functions may be present in the T-antigen J
domain. In support of this notion, Berjanskii and coworkers
have suggested that the NMR structural analysis of the poly-
omavirus J domain supports the existence of polyomavirus
family virus-specific structural elements in the extreme amino
terminus of T antigen (9).

CANCER AND CHAPERONES

What is the role of chaperones in nonvirally mediated cel-
lular transformation? Hsc70 has the hallmarks of a tumor
suppressor (it is mutated in some breast cancers [3]), and
Hsp90 overexpression enhances apoptosis in at least some cell
types (69). On the other hand, it is well established that some
chaperones, including Hsc70 and Hsp90, are overexpressed or
display changes in their subcellular localization in many tumor
types (109, 110, 220). This suggests that chaperones may con-
tribute to tumorigenesis; however, it is not clear whether chap-
erone overexpression is a cause or effect or the transformed
phenotype.

Overexpression of Hsc70 in transgenic mice induces T-cell
lymphomas (late in development at age 8 to 10 months), which
suggests that Hsc70 can be a cause of transformation (207).
However, in these studies, it is unclear why only some of the
founder mice (three of nine) develop lymphomas and why they
occur later in development. Not surprisingly, the cellular stress
and death pathways are linked, and consequently Hsc70 ex-
pression protects against apoptosis in multiple model systems
(68, 160, 161, 203). This occurs through at least two activities,
one upstream of caspase activation involving JNK and another
involving inhibition of caspases (161). Furthermore, inhibition
of Hsc70 synthesis results in tumor cell-specific apoptosis
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(167). Hsc70-mediated inhibition of apoptosis could explain
how overexpression of Hsc70 induces the lymphomas de-
scribed above (207).

Chaperones have been implicated in tumorigenesis by di-
rectly binding to and modulating the function of tumor sup-
pressors. Hsp90 binds to several kinases and is thought to
modulate their oncogenicity (19, 109). An Hsp90 homologue,
Hsp75, binds to pRB through an LXCXE motif during mitosis
(Fig. 3B) (35). In addition, Hsc70 binds to pRB in the context
of some cellular lysates (165). Hsc70 preferentially associates
with hypophosphorylated pRB in vitro, with the smallest frag-
ment of pRB that binds to Hsc70 being mapped to the amino-
terminal region including a small portion of the A box (Fig.
3B) (106). E1A, an LXCXE motif-containing protein, cannot
compete with Hsc70 for binding to pRB, suggesting that Hsc70
and LXCXE motif-containing proteins can coexist in the same
complex with pRB. Hsc70 binds to both wild-type and mutant
p53s (109, 128), and overexpression of Hsc70 can overcome
transformation induced by coexpression of a mutant p53 and
ras (267). Finally, DnaK, a prokaryotic homologue to Hsc70,
can activate the DNA binding activity of p53 in vitro (101, 102).
The above data imply that in many circumstances chaperones
are involved in promoting the function of tumor suppressors.
Paradoxically, chaperones are often found overexpressed in
tumors, which could be specific or alternatively due to the
stress induced by an increase in protein synthesis that occurs in
rapidly dividing cancer cells. At least in the case of viral infec-
tion, chaperone induction is specific, since sometimes only a
subset of chaperones are induced upon infection (235).
Whether the same can be concluded for nonvirally induced
tumorigenesis awaits further study. The above data suggest the
existence of a delicate balance between chaperone activity and
maintenance of proper cellular growth control.

Are chaperones useful targets for cancer therapy? Thus far,
the best chance for chaperone-based cancer therapy comes
from small molecule inhibitors such as geldanamycin and radi-
col. Both target the ATP binding activity of Hsp90 and both
have shown positive results as cancer therapeutic agents (109,
199, 202, 208, 259). Two promising compounds that alter
Hsc70 function,15-deoxyspergualin and R/1, are currently be-
ing tested for therapeutic applications (15, 59). The immuno-
reactivity of Hsc70-bound antigens has led some to develop
therapeutic applications by generating a chaperone-induced
immune response to cancer cells (109, 220). These and other
approaches are in still in their infancy, and future research is
required to determine their efficacy.

THE FUTURE

While in recent years much progress has been made, several
important questions regarding SV40 chaperone function re-
main. Much of our understanding of the J domain comes from
mutational studies conducted before it was known that T an-
tigen contains a J domain. Critically, the construction of more
surgical mutants within and surrounding the J domain should
afford us a more precise view into the role of the J domain, its
cellular targets, and the factors that determine its specific in-
teractions. For example, what is the carboxyl-terminal function
that interacts with the J domain to cause transformation? Does
T antigen alter p300 function or some other novel as-yet-

unidentified transformation function between amino acids 137
and 708? Why is it that the J-domain function is required in cis
with the rest of T antigen in some assays but may be comple-
mented in trans in others? Is Hsc70 the only biologically rele-
vant DnaK that participates in SV40 function? There are many
Hsc70 homologues in mammalian cells, so it is entirely possible
that other Hsc70 homologues interact with T antigen. For
example, mouse beta islet cells expressing T antigen via a
tetracycline-induced promoter express sevenfold-higher
mRNA levels of the Hsc70-related protein NST-1 (277). Does
NST-1 contribute to T-antigen activities, or is its overexpres-
sion simply an artifact of stressed cells? What cellular factor(s)
is required in addition to Hsc70 to efficiently drive the disrup-
tion of pRB/E2F family complexes? One could envision a
cochaperone such as a functional homologue to the eukaryotic
nucleotide exchange factor GrpE. Alternatively, a posttransla-
tional modification such as phosphorylation of pRB or E2F
may be required to modulate separation of pRB and E2F
proteins. As more of the components are purified (for exam-
ple, p130 and E2F-4), biochemical analysis to identify the cel-
lular proteins required for the release reaction can be per-
formed. Is it possible to inhibit viral life cycles by targeting
chaperone activities? A better understanding of what deter-
mines chaperone specificity is required before such therapies
can be efficiently designed. Finally, like the SV40-mediated
disruption of pRB-E2F complexes, is there a similar role for
the J-protein/Hsc70 chaperone machine in the nonviral con-
text?

Throughout this review we have tried to present not only the
progress that has been made with understanding the functions
of the T-antigen J domain but also the interesting, unresolved
questions as well. The take-home message from this review is
that the two distinct fields of chaperone research and cell cycle
regulation intersect at the T-antigen J domain.
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