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INTRODUCTION

Life on Earth depends on photosynthesis, which results in pro-
duction of plant biomass having cellulose as the major compo-
nent. The carbon cycle is closed primarily as a result of the action
of cellulose-utilizing microorganisms present in soil and the guts
of animals. Thus, microbial cellulose utilization is responsible for
one of the largest material flows in the biosphere and is of interest
in relation to analysis of carbon flux at both local and global
scales. The importance of microbial cellulose utilization in natural
environments is further enhanced by the status of ruminants as a
major source of dietary protein. Finally, microbial cellulose utili-
zation is also an integral component of widely used processes such
as anaerobic digestion and composting.

Plant biomass is the only foreseeable sustainable source of
fuels and materials available to humanity (410). Cellulosic ma-
terials are particularly attractive in this context because of their
relatively low cost and plentiful supply. The central technolog-
ical impediment to more widespread utilization of this impor-
tant resource is the general absence of low-cost technology for
overcoming the recalcitrance of cellulosic biomass. A promis-
ing strategy to overcome this impediment involves the produc-
tion of cellulolytic enzymes, hydrolysis of biomass, and fermen-
tation of resulting sugars to desired products in a single process
step via a cellulolytic microorganism or consortium. Such “con-
solidated bioprocessing” (CBP) offers very large cost reduc-
tions if microorganisms can be developed that possess the
required combination of substrate utilization and product for-
mation properties (405).

Notwithstanding its importance in various contexts, fundamen-
tal understanding of microbial cellulose utilization is in many
respects rudimentary. This is a result of the inherent complexity of
microbial cellulose utilization as well as methodological chal-
lenges associated with its study. Understanding of cellulose hy-
drolysis can be approached at several levels of aggregation: com-
ponents of cellulase enzyme systems, unfractionated cellulase
systems, pure cultures of cellulolytic microorganisms, and mixed
cultures of cellulolytic microorganisms. In general, our under-
standing is progressively less complete at more highly aggregated
levels of study. Thus, although much remains to be elucidated at
the level of enzyme components and the underlying genetics of
such components, understanding of cellulose hydrolysis by un-
fractionated cellulase systems is still less complete, understanding
of hydrolysis by pure cultures is more limited yet, and hydrolysis
in multispecies cultures and mixed communities is least under-
stood of all. There is a natural tendency for science to proceed
over time toward a finer level of aggregation—e.g., from pathways
to enzymes to genes—and this “reductionist” approach has
yielded tremendous insights with respect to the life sciences gen-
erally and cellulose hydrolysis in particular. An alternative “inte-
grative” approach, involving the development of an understand-
ing of aggregated systems based on an understanding of their less
aggregated components, is also a valid and important focus for
scientific endeavor. With respect to cellulose hydrolysis, such in-
tegration is essential for research advances to be translated into
advances in technological, ecological, and agricultural domains.

The great majority of cellulose hydrolysis research to date
has focused on the genetics, structure, function, and interac-
tion of components of cellulase enzyme systems. Several recent
and comprehensive reviews address this large body of work
(see “Cellulase enzyme systems” below). Whereas hydrolysis of
cellulosic biomass has been approached in prior reviews and
the research literature primarily as an enzymatic phenomenon,
this review approaches the subject primarily as a microbial
phenomenon. Thus, we intend our review to embody the inte-
grative approach described in the previous paragraph.

The goals of this review are to collect and synthesize informa-
tion from the literature on microbial cellulose utilization in both
natural and technological contexts, to point out key unresolved
issues, and to suggest approaches by which such issues can be
addressed. In seeking to consider microbial cellulose utilization
from an integrative perspective, we endeavor to consider a diver-
sity of cellulolytic organisms and enzyme systems. This effort is,
however, constrained by the information available, which is much
more extensive for some types of systems and some levels of
consideration than for others. Both aerobic and anaerobic organ-
isms and enzymes are considered in our discussion of fundamen-
tals (see “Fundamentals” below) and methodological aspects (see
“Methodological basis for study” below). Our treatment of quan-
titative aspects of microbial cellulose utilization (see “Quantita-
tive description of cellulose hydrolysis” below) of necessity fo-
cuses primarily on aerobic organisms and their enzymes.
Information on anaerobic organisms and their enzymes is in-
cluded in this section as possible, but is much more limited. In
considering processing of cellulosic biomass (see “Processing of
cellulosic biomass—a biological perspective” below) and organ-
ism development for consolidated bioprocessing (see “Organism
development for consolidated bioprocessing” below), we focus on
organisms producing reduced metabolic products via an effec-
tively anaerobic metabolism because this is responsive to the
needs, constraints, and opportunities associated with microbial
conversion of cellulosic feedstocks (see“Processing of cellulosic
biomass—a biological perspective” below). Literature pertaining
to noncellulolytic organisms is included in cases where it provides
important foundational understanding for topics involving cellu-
lolytic organisms, as in the case of metabolic engineering of end
product formation in cellulolytic anaerobes and expression of
heterologous saccharolytic enzymes in noncellulolytic hosts (see
“Organism development for consolidated bioprocessing” below).
We conclude with a discussion of the genesis, status, and future
direction of the microbial cellulose utilization field from both
fundamental and biotechnological perspectives.

FUNDAMENTALS

Structure and Composition of Cellulosic Biomass

Cellulose, the most abundant component of plant biomass,
is found in nature almost exclusively in plant cell walls, al-
though it is produced by some animals (e.g., tunicates) and a
few bacteria. Despite great differences in composition and in
the anatomical structure of cell walls across plant taxa, a high
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cellulose content—typically in the range of approximately 35 to
50% of plant dry weight—is a unifying feature (410). In a few
cases (notably cotton bolls), cellulose is present in a nearly
pure state. In most cases, however, the cellulose fibers are
embedded in a matrix of other structural biopolymers, primar-
ily hemicelluloses and lignin, which comprise 20 to 35 and 5 to
30% of plant dry weight (410, 428, 707). Although these matrix
interactions vary with plant cell type and with maturity (748),
they are a dominant structural feature limiting the rate and
extent of utilization of whole, untreated biomass materials. A
detailed description of these interactions and the mechanisms
by which they limit hydrolysis and utilization is beyond the
scope of this paper and is the topic of several recent reviews
(245, 749). The discussion below is focused primarily on cel-
lulose itself, since it appears that—once stripped of the pro-
tective effects of other plant biopolymers—cellulose in native
plant material shares many characteristics across plant taxa,
including its potential for complete hydrolysis and utilization
under the proper microbial and environmental conditions.

An important feature of cellulose, relatively unusual in the
polysaccharide world, is its crystalline structure. Cellulose is
synthesized in nature as individual molecules (linear chains of
glucosyl residues) which undergo self-assembly at the site of
biosynthesis (86). There is evidence that associated hemicellu-
loses regulate this aggregation process (19). Approximately 30
individual cellulose molecules are assembled into larger units
known as elementary fibrils (protofibrils), which are packed
into larger units called microfibrils, and these are in turn as-
sembled into the familiar cellulose fibers.

The arrangement of individual chains within the elementary
fibrils has largely been inferred from the fitting of X-ray dif-
fraction data to statistical models that calculate structure based
on minimum conformational energy. Individual models are a
source of considerable controversy, even in terms of such fun-
damentals as the orientation of adjacent chains (parallel up
versus parallel down) (354, 355, 510). Regardless of their ori-
entation, the chains are stiffened by both intrachain and inter-
chain hydrogen bonds. Adjacent sheets overlie one another
and are held together (in cellulose I, the most abundant form
of cellulose in nature) by weak intersheet van der Waals forces;
despite the weakness of these interactions, their total effect
over the many residues in the elementary fibril is considerable
(538). The crystalline nature of cellulose implies a structural
order in which all of the atoms are fixed in discrete positions
with respect to one another. An important feature of the crys-
talline array is that the component molecules of individual
microfibrils are packed sufficiently tightly to prevent penetra-
tion not only by enzymes but even by small molecules such as
water.

Although cellulose forms a distinct crystalline structure, cel-
lulose fibers in nature are not purely crystalline. The degree of
departure from crystallinity is variable and has led to the no-
tion of a “lateral order distribution” of crystallinity, which
portrays a population of cellulose fibers in statistical terms as a
continuum from purely crystalline to purely amorphous, with
all degrees of order in between (427). In addition to the crys-
talline and amorphous regions, cellulose fibers contain various
types of irregularities, such as kinks or twists of the microfibrils,
or voids such as surface micropores, large pits, and capillaries
(63, 127, 178, 428). The total surface area of a cellulose fiber is

thus much greater than the surface area of an ideally smooth
fiber of the same dimension. The net effect of structural het-
erogeneity within the fiber is that the fibers are at least partially
hydrated by water when immersed in aqueous media, and some
micropores and capillaries are sufficiently spacious to permit
penetration by relatively large molecules—including, in some
cases, cellulolytic enzymes (647, 648).

Purified celluloses used for studies of hydrolysis and micro-
bial utilization vary considerably in fine structural features, and
the choice of substrate for such studies undoubtedly affects the
results obtained. Holocelluloses such as Solka Floc are pro-
duced by delignification of wood or other biomass materials.
These materials contain substantial amounts of various hemi-
celluloses and often have a low bulk density suggestive of some
swelling of cellulose fibers. Microcrystalline celluloses (e.g.,
Avicel and Sigmacell) are nearly pure cellulose, and the dilute-
acid treatment used in their preparation removes both hemi-
celluloses and the more extensive amorphous regions of the
cellulose fibers. Commercial microcrystalline celluloses differ
primarily in particle size distribution, which (as indicated be-
low) has significant implications for the rate of hydrolysis and
utilization. Cellulose synthesized by the aerobic bacterium Ace-
tobacter xylinum has been tremendously useful as a model
system for studying cellulose biosynthesis, but has only been
used for a few studies of microbial cellulose utilization. Like
plant cellulose, bacterial cellulose is highly crystalline, but the
two celluloses differ in the arrangement of glucosyl units within
the unit cells of the crystallites (20), and genetic evidence
suggests that the two celluloses are synthesized by enzymatic
machinery that differs considerably at the molecular level (86).
The two celluloses also differ substantially in rate of hydrolysis
by fungal cellulases (246) and in rate of utilization by mixed
ruminal bacteria (602, 731). The variable structural complexity
of pure cellulose and the difficulty of working with insoluble
substrates has led to the wide use of the highly soluble cellulose
ether, carboxymethylcellulose (CMC), as a substrate for stud-
ies of endoglucanase production. Unfortunately, the use of
CMC as an enzymatic substrate has weakened the meaning of
the term “cellulolytic,” since many organisms that cannot de-
grade cellulose can hydrolyze CMC via mixed �-glucan en-
zymes (185). Because of the substituted nature of the hydro-
lytic products, relatively few microbes (including some fungi
and Cellulomonas strains) can use CMC as a growth substrate.

Utilization of cellulosic biomass is more complex than is that
of pure cellulose, not only because of the former’s complex
composition (i.e., presence of hemicelluloses and lignin) but
also because of the diverse architecture of plant cells them-
selves. Plant tissues differ tremendously with respect to size
and organization. Some plant cell types (e.g., mesophyll) have
thin, poorly lignified walls that are easily degraded by polysac-
charide-hydrolyzing enzymes. Others, like sclerenchyma, have
thick cell walls and a highly lignified middle lamella separating
cells from one another. These cell walls must be attacked from
the inside (luminal) surface out through the secondary wall (as
opposed to particles of pure cellulose, which are degraded
from the outside inward). Thus, in addition to constraints im-
posed by the structure of cellulose itself, additional limitations
are imposed by diffusion and transport of the cellulolytic agent
to the site of attack. These constraints may severely limit uti-
lization in some habitats (750).
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Taxonomic Diversity

Until recently, hydrolysis and utilization of cellulose in
amounts sufficient to provide usable energy to an organism
were thought to be carried out exclusively by microorganisms.
It now appears that some animal species, including termites
and crayfish, produce their own cellulases, which differ sub-
stantially from those of their indigenous microflora (723), al-
though the contribution of these enzymes to the nutrition of
the animal is unclear. In examining the distribution of cellulo-
lytic species across taxonomic groups, it is useful to consider
microbial taxonomy based on phylogeny, rather than on a set
of arbitrary morphological or biochemical characteristics as
used in classical taxonomy. Current views of the evolutionary
relatedness of organisms are based largely on phylogenetic
trees constructed from measurements of sequence divergence
among chronometric macromolecules, particularly small-sub-
unit rRNAs (16S rRNA of procaryotes and 18S rRNA of
eucaryotes [503, 752]). An inspection of these trees reveals that
the ability to digest cellulose is widely distributed among many
genera in the domain Bacteria and in the fungal groups within
the domain Eucarya, although no cellulolytic members of do-
main Archaea have yet been identified. Within the eubacteria
there is considerable concentration of cellulolytic capabilities
among the predominantly aerobic order Actinomycetales (phy-
lum Actinobacteria) and the anaerobic order Clostridiales (phy-
lum Firmicutes). Fungal cellulose utilization is distributed
across the entire kingdom, from the primitive, protist-like
Chytridomycetes to the advanced Basidiomycetes.

The broad distribution of cellulolytic capability could sug-
gest conservation of a cellulose-degrading capability acquired
by a primordial ancestor early in evolutionary development;
however, this would seem unlikely, given that the capacity for
cellulose biosynthesis did not evolve until much later, with the
development of algae, land plants and the bacterium A. xyli-
num. More likely is the convergent evolution toward a cellu-
lolytic capability under the selective pressure of abundant cel-
lulose availability following the development of cellulose
biosynthesis. Evidence for such convergent evolution is dis-
cussed below (see “Molecular biology of cellulase enzymes”).

Fungi are well-known agents of decomposition of organic
matter in general and of cellulosic substrates in particular (94,
462). Fungal taxonomy is based largely on the morphology of
mycelia and reproductive structures during various stages of
the fungal life cycle rather than on substrate utilization capa-
bility. Indeed, systematic characterization of growth substrates
has not been carried out for many described fungal species.
Therefore, it is currently unclear how broadly and deeply cel-
lulolytic capability extends through the fungal world, and a
consideration of the taxonomy of cellulolytic fungi may ulti-
mately prove to be only a slightly narrower topic than consid-
eration of fungal taxonomy in its entirety. Nevertheless, some
generalizations can be made regarding the distribution of cel-
lulolytic capabilities among these organisms.

A number of species of the most primitive group of fungi,
the anaerobic Chytridomycetes, are well known for their ability
to degrade cellulose in gastrointestinal tracts of ruminant an-
imals. Although taxonomy of this group remains controversial
(94), members of the order Neocallimastigales have been clas-
sified based on the morphology of their motile zoospores and

vegetative thalli; they include the monocentric genera Neocal-
limastix, Piromyces, and Caecomyces and the polycentric genera
Orpimomyces and Anaeromyces (376). Cellulolytic capability is
also well represented among the remaining subdivisions of
aerobic fungi. Within the approximately 700 species of Zygo-
mycetes, only certain members of the genus Mucor have been
shown to possess significant cellulolytic activity, although mem-
bers of this genus are better known for their ability to utilize
soluble substrates. By contrast, the much more diverse subdi-
visions Ascomycetes, Basidiomycetes, and Deuteromycetes
(each of which number over 15,000 species [94]), contain large
numbers of cellulolytic species. Members of genera that have
received considerable study with respect to their cellulolytic
enzymes and/or wood-degrading capability include Bulgaria,
Chaetomium, and Helotium (Ascomycetes); Coriolus, Phanero-
chaete, Poria, Schizophyllum and Serpula (Basidiomycetes); and
Aspergillus, Cladosporium, Fusarium, Geotrichum, Myroth-
ecium, Paecilomyces, Penicillium, and Trichoderma (Deutero-
mycetes). For a more detailed consideration of fungal taxon-
omy and some of its unresolved issues, see reference 94.

When viewed through the lens of microbial physiology, the
cellulolytic bacteria can be observed to comprise several di-
verse physiological groups (Table 1): (i) fermentative anaer-
obes, typically gram positive (Clostridium, Ruminococcus, and
Caldicellulosiruptor) but containing a few gram-negative spe-
cies, most of which are phylogenetically related to the Clos-
tridium assemblage (Butyrivibrio and Acetivibrio) but some of
which are not (Fibrobacter); (ii) aerobic gram-positive bacteria
(Cellulomonas and Thermobifida); and (iii) aerobic gliding bac-
teria (Cytophaga, and Sporocytophaga). Generally, only a few
species within each of the above-named genera are actively
cellulolytic. The distribution of cellulolytic capability among
organisms differing in oxygen relationship, temperature, and
salt tolerance is a testament to the wide availability of cellulose
across natural habitats. Complicating the taxonomic picture is
the recent genomic evidence that the noncellulolytic solvento-
genic Clostridium acetobutylicum contains a complete cellulo-
somal gene cluster system that is not expressed, due in part to
disabled promoter sequences (606). Examination of the rapidly
expanding genomics database may reveal similar surprises in
the future.

Among the bacteria, there is a distinct difference in cellulo-
lytic strategy between the aerobic and anaerobic groups. With
relatively few exceptions (549, 659), anaerobes degrade cellu-
lose primarily via complexed cellulase systems exemplified by
the well-characterized polycellulosome organelles of the ther-
mophilic bacterium Clostridium thermocellum (606). Cellulo-
lytic enzymes in C. thermocellum cultures are typically distrib-
uted both in the liquid phase and on the surface of the cells.
However, several anaerobic species that utilize cellulose do not
release measurable amounts of extracellular cellulase, and in-
stead have localized their complexed cellulases directly on the
surface of the cell or the cell-glycocalyx matrix. Most anaerobic
cellulolytic species grow optimally on cellulose when attached
to the substrate, and in at least a few species this adhesion
appears to be obligate. Cellulolytic anaerobes resemble other
fermentative anaerobes in that their cell yields are low, with
the bulk of substrate being converted to various fermentation
end products, including ethanol, organic acids, CO2, and H2.

Aerobic cellulose degraders, both bacterial and fungal, uti-
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lize cellulose through the production of substantial amounts of
extracellular cellulase enzymes that are freely recoverable from
culture supernatants (554, 606), although enzymes are occa-
sionally present in complexes at the cell surface (67, 715). The
individual enzymes often display strong synergy in the hydrol-
ysis of cellulose. While many aerobic bacteria adhere to cellu-
lose, physical contact between cells and cellulose does not
appear to be necessary for cellulose hydrolysis. Kauri and
Kushner (322) have shown that separating Cytophaga cells
from cellulose via an agar layer or membrane filters appears to
enhance cellulose utilization; they suggest that this separation
may dilute hydrolytic products, thus relieving catabolite repres-
sion of enzyme synthesis. Aerobic cellulolytic bacteria and
fungi produce high cell yields characteristic of aerobic respi-
ratory growth, and this has led to considerable technological
interest in producing microbial cell protein from waste cellu-
losic biomass (175, 567, 594, 623). In addition, many studies of
aerobic cellulolytic microbes have focused on improving the
yield and characteristics of cellulase enzymes. The physiology
of the organisms themselves has received surprisingly little
study, apart from studies on the effect of growth conditions on
enzyme secretion (see, e.g., reference 236).

An interesting point suggested from Table 1 is that cellulose
utilization generally proceeds via organisms that are either
aerobic or anaerobic, but not both. Indeed, despite the wide
distribution of facultatively anaerobic bacteria in general,
members of the genus Cellulomonas are the sole reported
facultatively anaerobic cellulose degraders (25, 26, 113, 150).
Whether the general paucity of facultatively anaerobic groups
is a consequence of a physiological or ecological incompatibil-
ity of two fundamentally different strategies for cellulose utili-
zation employed by the two groups remains an interesting open
question.

It is also notable that most aerobic cellulolytic bacterial
species common in soil are classified within genera well known
for secondary (non-growth-associated) metabolism, including
the formation of distinct resting states (Bacillus, Micromonos-
pora, and Thermobifida) and/or production of antibiotics (Ba-
cillus and Micromonospora) and other secondary metabolites.
While antibiotic production in cellulolytic species has not been
systematically investigated, production of such compounds
might provide additional selective fitness to compensate for
their rather modest maximum growth rate on cellulose. An
ability to form resting states relatively resistant to starvation or
other environmental insult also provides a selective advantage
in nature.

Cellulase Enzyme Systems

As noted in the discussion of structure and composition (see
above), natural cellulosic substrates (primarily plant cell ma-
terials) are composed of heterogeneous intertwined polysac-
charide chains with varying degrees of crystallinity, hemicellu-
loses and pectins, embedded in lignin. Microorganisms
produce multiple enzymes to degrade plant cell materials,
known as enzyme systems (722). Although this discussion fo-
cuses primarily on the action of hydrolytic enzyme systems on
cellulose, it should be realized that such systems are also active
on hemicellulose, and enzymes active specifically on hemicel-
lulose are commonly coproduced by cellulolytic microorgan-

isms. Prior reviews consider the complexed cellulases of an-
aerobic bacteria (31, 33, 36, 37, 38, 39, 40, 41, 43, 165, 166, 182,
383, 565, 606, 621), noncomplexed fungal and bacterial cellu-
lases (122, 349, 579, 653, 672, 673, 756), cellulase structure and
catalytic mechanisms (58, 136, 470, 624, 683, 722, 757, 758),
cellulase (hydrolase) families (254, 255, 256, 258, 260), and
biotechnological applications (52, 214, 501, 604, 605).

For microorganisms to hydrolyze and metabolize insoluble
cellulose, extracellular cellulases must be produced that are
either free or cell associated. The biochemical analysis of cel-
lulase systems from aerobic and anaerobic bacteria and fungi
has been comprehensively reviewed during the past two de-
cades. Components of cellulase systems were first classified
based on their mode of catalytic action and have more recently
been classified based on structural properties (260). Three
major types of enzymatic activities are found: (i) endoglu-
canases or 1,4-�-D-glucan-4-glucanohydrolases (EC 3.2.1.4),
(ii) exoglucanases, including 1,4-�-D-glucan glucanohydrolases
(also known as cellodextrinases) (EC 3.2.1.74) and 1,4-�-D-
glucan cellobiohydrolases (cellobiohydrolases) (EC 3.2.1.91),
and (iii) �-glucosidases or �-glucoside glucohydrolases (EC
3.2.1.21). Endoglucanases cut at random at internal amor-
phous sites in the cellulose polysaccharide chain, generating
oligosaccharides of various lengths and consequently new
chain ends. Exoglucanases act in a processive manner on the
reducing or nonreducing ends of cellulose polysaccharide
chains, liberating either glucose (glucanohydrolases) or cello-
biose (cellobiohydrolase) as major products. Exoglucanases
can also act on microcrystalline cellulose, presumably peeling
cellulose chains from the microcrystalline structure (672).
�-Glucosidases hydrolyze soluble cellodextrins and cellobiose
to glucose (Fig. 1). Cellulases are distinguished from other
glycoside hydrolases by their ability to hydrolyze �-1,4-glu-
cosidic bonds between glucosyl residues. The enzymatic break-
age of the �-1,4-glucosidic bonds in cellulose proceeds through
an acid hydrolysis mechanism, using a proton donor and nu-
cleophile or base. The hydrolysis products can either result in
the inversion or retention (double replacement mechanism) of
the anomeric configuration of carbon-1 at the reducing end
(58, 751).

The insoluble, recalcitrant nature of cellulose represents a
challenge for cellulase systems. A general feature of most cel-
lulases is a modular structure often including both catalytic and
carbohydrate-binding modules (CBMs). The CBM effects
binding to the cellulose surface, presumably to facilitate cellu-
lose hydrolysis by bringing the catalytic domain in close prox-
imity to the substrate, insoluble cellulose. The presence of
CBMs is particularly important for the initiation and proces-
sivity of exoglucanases (673) (Fig. 1A). Revisiting the original
model of cellulose degradation proposed by Reese et al. (563),
a possible additional noncatalytic role for CBMs in cellulose
hydrolysis was proposed: the “sloughing off” of cellulose frag-
ments from cellulosic surfaces of, e.g., cotton fibers, thereby
enhancing cellulose hydrolysis (161). Cellulase systems exhibit
higher collective activity than the sum of the activities of indi-
vidual enzymes, a phenomenon known as synergism. Four
forms of synergism have been reported: (i) endo-exo synergy
between endoglucanases and exoglucanases, (ii) exo-exo syn-
ergy between exoglucanases processing from the reducing and
non-reducing ends of cellulose chains, (iii) synergy between
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exoglucanases and �-glucosidases that remove cellobiose (and
cellodextrins) as end products of the first two enzymes, and (iv)
intramolecular synergy between catalytic domains and CBMs
(161, 672).

Cellulase systems are not merely an agglomeration of en-
zymes representing the three enzyme groups (endoglucanases,
exoglucanases, and �-glucosidases, with or without CBMs), but
rather act in a coordinated manner to efficiently hydrolyze
cellulose. Microorganisms have adapted different approaches
to effectively hydrolyze cellulose, naturally occurring in insol-
uble particles or imbedded within hemicellulose and lignin
polymers (683). Cellulolytic filamentous fungi (and actinomy-
cete bacteria) have the ability to penetrate cellulosic substrates
through hyphal extensions, thus often presenting their cellu-
lase systems in confined cavities within cellulosic particles
(176). The production of “free” cellulases, with or without
CBMs, may therefore suffice for the efficient hydrolysis of
cellulose under these conditions. The enzymes in these cellu-
lase systems do not form stable high-molecular weight com-
plexes and therefore are called “noncomplexed” systems (Fig.
1A). By contrast, anaerobic bacteria lack the ability to effec-
tively penetrate cellulosic material and perhaps had to find
alternative mechanisms for degrading cellulose and gaining
access to products of cellulose hydrolysis in the presence of
competition from other microorganisms and with limited ATP

available for cellulase synthesis. This could have led to the
development of “complexed” cellulase systems (called “cellu-
losomes”), which position cellulase-producing cells at the site
of hydrolysis, as observed for clostridia and ruminal bacteria
(Fig. 1B). Noncomplexed cellulase systems are discussed first,
highlighting the cellulase systems of the aerobic filamentous
fungi Trichoderma reesei and Humicola insolens as well as aer-
obic actinomycetes belonging to the genera Cellulomonas and
Thermobifida. The interesting multidomain cellulase systems
of anaerobic hyperthermophilic bacteria are mentioned briefly.
Thereafter the complexed cellulase systems of anaerobic Clos-
tridium species, Ruminococcus species, and anaerobic fungi are
considered.

Noncomplexed cellulase systems. Cellulases from aerobic
fungi have received more study than have those of any other
physiological group, and fungal cellulases currently dominate
the industrial applications of cellulases (235, 492, 614). In
particular, the cellulase system of T. reesei (teleomorph:Hypo-
crea jecorina, initially called Trichoderma viride) has been the
focus of research for 50 years (424, 561, 562, 563). T. reesei
produces at least two exoglucanases (CBHI and CBHII), five
endoglucanases (EGI, EGII, EGIII, EGIV, and EGV), and
two �-glucosidases (BGLI and BGLII (358, 494, 664). Inten-
sive efforts over several decades to enhance cellulase yields
have resulted in strains that produce up to 0.33 g of protein/g

FIG. 1. Schematic representation of the hydrolysis of amorphous and microcrystalline cellulose by noncomplexed (A) and complexed (B) cel-
lulase systems. The solid squares represent reducing ends, and the open squares represent nonreducing ends. Amorphous and crystalline regions
are indicated. Cellulose, enzymes, and hydrolytic products are not shown to scale.
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of utilizable carbohydrate (177). The necessity for the two
exoglucanases (cellobiohydrolases) has been attributed to their
particular preferences for the reducing (CBHI) and nonreduc-
ing (CBHII) ends of cellulose chains of microcrystalline cellu-
lose. This notion has also been supported by the exo-exo syn-
ergy observed between these two enzymes (259, 438, 489).
Crystallography has elucidated the three-dimensional struc-
tures of the two cellobiohydrolases (163, 574). CBHI contains
four surface loops that give rise to a tunnel with a length of 50
Å; CBHII contains two surface loops that give rise to a tunnel
of 20 Å. These tunnels proved to be essential to the cellobio-
hydrolases for the processive cleavage of cellulose chains from
the reducing or nonreducing ends. The three-dimensional
(3-D) structure of CBHI confirmed that cellobiose is the major
hydrolytic product as the cellulose chain passes through the
tunnel. Occasionally, cellotriose or glucose is released during
initial stages of hydrolysis (163). The structure of EGI (struc-
turally related to CBHII) also has been resolved (345) to reveal
the presence of shorter loops that create a groove rather than
a tunnel. The groove presumably allows entry of the cellulose
chain for subsequent cleavage. A similar groove was shown for
the structure of EGIII (592), an endoglucanase that lacks a
CBM.

Cellobiohydrolase activity is essential for the hydrolysis of
microcrystalline cellulose. CBHI and CBHII are the principal
components of the T. reesei cellulase system, representing 60
and 20%, respectively, of the total cellulase protein produced
by the fungus on a mass basis (756). The important role of
CBMs for both enzymes to ensure binding and processivity has
been shown clearly (512). However, both the cellobiohydro-
lases are very slow at decreasing the degree of polymerization
of cellulose. Endoglucanases are thought to be primarily re-
sponsible for decreasing degree of polymerization by internally
cleaving cellulose chains at relatively amorphous regions,
thereby generating new cellulose chain ends susceptible to the
action of cellobiohydrolases (673). The need for five endoglu-
canase species in the T. reesei cellulase system has not been
clearly explained, particularly considering that endoglucanases
(with EGI and EGII as major species) represent less than 20%
of the total cellulase protein of T. reesei. Synergism between
endoglucanases and cellobiohydrolases has been shown for
EGI (693), and EGII (437), and EGIII (489). However, syn-
ergism between endoglucanases has not been clearly demon-
strated. Part of the problem may be that natural cellulosic
substrates are not used for laboratory experiments due to their
heterogeneous nature and the true functions of the different
endoglucanases may not be observed on purified cellulose. It is
noteworthy that some endoglucanases, such as EGI, have
broad substrate specificity (e.g., xylanase activity [358]). The
presence of CBMs is not essential for endoglucanase activity or
for endo-exo synergism (592). Cellobiose, the major product of
CBHI and CHBII activity, inhibits the activity of the cellobio-
hydrolases and endoglucanases (279, 437, 470).

The production of at least two �-glucosidases by T. reesei
facilitates the hydrolysis of cellobiose and small oligosaccha-
rides to glucose. Both BGLI and BGLII have been isolated
from culture supernatants, but a large fraction of these en-
zymes remains cell wall bound (442, 690). The presence of
�-glucosidases in close proximity to the fungal cell wall may
limit loss of glucose to the environment following cellulose

hydrolysis. T. reesei produces �-glucosidases at low levels com-
pared to other fungi such as Aspergillus species (560). Further-
more, the �-glucosidases of T. reesei are subject to product
(glucose) inhibition (102, 217, 417) whereas those of Aspergil-
lus species are more glucose tolerant (138, 231, 724, 768). The
levels of T. reesei �-glucosidase are presumably sufficient for
growth on cellulose, but not sufficient for extensive in vitro
saccharification of cellulose. T. reesei cellulase preparations,
supplemented with Aspergillus �-glucosidase, are considered
most often for cellulose saccharification on an industrial scale
(560, 644).

The cellulase system of the thermophilic fungus H. insolens
possesses a battery of enzymes that allows the efficient utiliza-
tion of cellulose. The H. insolens cellulase system is homolo-
gous to the T. reesei system and also contains at least seven
cellulases (two cellobiohydrolases [CBHI and CBHII] and five
endoglucanases [EGI, EGII, EGIII, EGV, and EGVI]) (603).
However, differences exist, such as the absence of a CBM in
EGI of H. insolens. The enzymatic activity of the low-molecu-
lar-weight EGIII (also lacking a CBM) observed on different
soluble cellulosic substrates was very low, and the natural func-
tion of this enzyme still remains unclear (603). Boisset et al.
(65) studied the hydrolysis of bacterial microcrystalline cellu-
lose (BMCC), using recombinant CBHI, CBHII, and EGV
produced in Aspergillus oryzae, and elegantly showed that a
mixture of the three enzymes allow efficient saccharification of
crystalline cellulose. Moreover, optimal saccharification was
observed when the mixture contained about 70 and 30% of
total protein as CBHI and CBHII, respectively. Although the
endoglucanase EGV was essential for efficient crystalline cel-
lulose hydrolysis by either CBHI or CBHII, only 1 to 2% of the
total protein was needed for maximum efficiency. The combi-
nation of all three enzymes yielded more than 50% microcrys-
talline cellulose hydrolysis. In comparison, the individual en-
zymes yielded less than 10% microcrystalline cellulose
hydrolysis, whereas EGV plus CBHI, EGV plus CBHII, and
CBHI plus CBHII yielded approximately 25, 14, and 33%
hydrolysis from 3 g of bacterial microcrystalline cellulose
(BMCC) per liter, respectively (65).

The white rot fungus Phanerochaete chrysosporium has been
used as a model organism for lignocellulose degradation (78).
P. chrysosporium produces complex arrays of cellulases, hemi-
cellulases, and lignin-degrading enzymes for the efficient deg-
radation of all three major components of plant cell walls:
cellulose, hemicellulose, and lignin (79, 80, 118, 126, 698).
Cellulose and hemicellulose degradation occur during primary
metabolism, whereas lignin degradation is a secondary meta-
bolic event triggered by limitation of carbon, nitrogen, or sulfur
(80). P. chrysosporium produces a cellulase system with CBHII
and six CBHI-like homologues, of which CBHI-4 is the major
cellobiohydrolase (125, 698). Recently, a 28-kDa endoglu-
canase (EG28) lacking a CBM was isolated from P. chrysospo-
rium (252). Synergism between the EG28 and the cellobiohy-
drolases was demonstrated, and it has been suggested that
EG28 is homologous to EGIII of T. reesei and H. insolens. No
other typical endoglucanase has been isolated from P. chryso-
sporium. However, Birch et al. (55) reported differential splic-
ing in the CBM-encoding region of the cbh1.2 gene, depending
on whether microcrystalline cellulose (Avicel) or amorphous
cellulose (CMC) was used as the substrate. They proposed that
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differential splicing of the cbhI-like genes of P. chrysosporium
could yield cellobiohydrolase and endoglucanase activity.
Apart from cellobiohydrolases and possible endoglucanase ac-
tivities, P. chrysosporium also produces cellobiose dehydroge-
nase that, in the presence of O2, oxidizes cellobiose to cello-
bionolactone, which reacts spontaneously with water to form
cellobionic acid (251, 695). The biological function of cellobi-
ose dehydrogenase has not been clarified, but its binding to
microcrystalline cellulose and the enhancement of cellulose
hydrolysis have been reported (28, 253). Cellobiose dehydro-
genase may help generate hydroxyl radicals that could assist in
lignin and cellulose depolymerization (251).

The best-studied species of cellulolytic aerobic bacteria be-
long to the genera Cellulomonas and Thermobifida (formerly
Thermomonospora). Cellulomonas species are coryneform bac-
teria that produce at least six endoglucanases and at least one
exoglucanase (Cex) (99). The individual cellulases of Cellu-
lomonas resemble the cellulase systems of aerobic fungi and
contain CBMs; however, cellulosome-like protuberant struc-
tures have been noted on Cellulomonas cells grown with cel-
lulose and cellobiose as carbon sources (370, 714). The ther-
mophilic filamentous bacterium Thermobifida fusca (formerly
Thermomonospora fusca) is a major cellulose degrader in soil.
Six cellulases, three endoglucanases (E1, E2, and E5), two
exoglucanases (E3 and E6), and an unusual cellulase with both
endoglucanase and exoglucanase activity (E4) have been iso-
lated. The latter enzyme has high activity on BMCC and also
exhibits synergism with both the other T. fusca endoglucanases
and exoglucanases (304). The E4 enzyme also contains a family
III CBM that assists the enzyme in processivity (303). Factorial
optimization of the T. fusca cellulase system was undertaken,
and the highest synergistic effect was shown with the addition
of CBHI from T. reesei (335).

The thermophilic and hyperthermophilic procaryotes repre-
sent a unique group of microorganisms that grows at temper-
atures that may exceed 100°C. Several cellulolytic hyperther-
mophiles have been isolated during the past decade (48).
Surprisingly, no cellulolytic thermophilic archaea have been
described, although archaea that can grow on cellobiose and
degrade other abundant polysaccharides, such as starch, chitin,
and xylan, have been isolated (172, 656). Only two aerobic
thermophilic bacteria have been described that produce cellu-
lases: Acidothermus cellulolyticus (an actinomycete) and
Rhodothermus (238, 584).

Complexed cellulase systems. Microorganisms producing
complexed cellulase systems (cellulosomes) are typically found
in anaerobic environments, where they exist in consortia with
other microorganisms, both cellulolytic and noncellulolytic.
The cellulosome is thought to allow concerted enzyme activity
in close proximity to the bacterial cell, enabling optimum syn-
ergism between the cellulases presented on the cellulosome.
Concomitantly, the cellulosome also minimizes the distance
over which cellulose hydrolysis products must diffuse, allowing
efficient uptake of these oligosaccharides by the host cell (33,
606).

Cellulosomes are protuberances produced on the cell wall of
cellulolytic bacteria when growing on cellulosic materials.
These protuberances are stable enzyme complexes that are
firmly bound to the bacterial cell wall but flexible enough to
also bind tightly to microcrystalline cellulose. Cellulosomes

from different clostridia (Clostridium thermocellum, Clostrid-
ium cellulolyticum, Clostridium cellulovorans, and Clostridium
josui) and Ruminococcus species in the rumen have been stud-
ied in detail. The architecture of cellulosomes is similar among
these organisms, although cellulosome composition varies
from species to species. The cellulosome of the thermophilic C.
thermocellum is discussed and briefly compared to those of the
mesophilic C. cellulolyticum, C. cellulovorans, and R. albus
(606).

The cellulosome structure of C. thermocellum was resolved
through a combination of biochemical, immunochemical, ul-
trastructural, and genetic techniques (33). The cellulosome
consists of a large noncatalytic scaffoldin protein (CipA) of 197
kDa that is multimodular and includes nine cohesins, four
X-modules (hydrophilic modules), and a family III CBM. The
scaffoldin is anchored to the cell wall via type II cohesin do-
mains. A total of 22 catalytic modules, at least 9 of which
exhibit endoglucanase activity (CelA, CelB, CelD, CelE, CelF,
CelG, CelH, CelN, and CelP), 4 of which exhibit exoglucanase
activity (CbhA, CelK, CelO, CelS), 5 of which exhibit hemi-
cellulase activity (XynA, XynB, XynV, XynY, XynZ), 1 of
which exhibits chitinase activity (ManA), and 1 of which ex-
hibits lichenase activity (LicB), have dockerin moieties that can
associate with the cohesins of the CipA protein to form the
cellulosome. The assembly of the catalytic modules onto the
scaffoldin, their composition, and their synergistic activity are
still poorly understood. It is assumed that the cellulosome
composition can vary and that the catalytic domains do not
bind to specific cohesins (39). Preferred proximity relation-
ships between specific catalytic domains cannot be excluded.
The major exoglucanase, CelS, is always present in the cellu-
losome (466). CelS is a processive cellulase with a preference
for microcrystalline or amorphous cellulose but not for CMC.
CelS is thus defined as an exoglucanase and produces predom-
inantly cellobiose with cellotriose as a minor product. Cellobi-
ose acts as a strong inhibitor of CelS (356, 357). CelA is the
major endoglucanase associated with the cellulosome (13,
606). Cellulosomes are remarkably stable, large complexes that
can vary from 2 to 16 MDa and even up to 100 MDa in the case
of polycellulosomes (39, 122, 606). The cellulosomes are ex-
tensively glycosylated (6 to 13% carbohydrate content), partic-
ularly on the scaffoldin moiety. The glycosyl groups may pro-
tect the cellulosome against proteases but may also play a role
in cohesin-dockerin recognition (208).

Cellulosome preparations from C. thermocellum are very
efficient at hydrolyzing microcrystalline cellulose (see “Rates
of enzymatic hydrolysis” below). The high efficiency of the
cellulosome has been attributed to (i) the correct ratio between
catalytic domains that optimize synergism between them, (ii)
appropriate spacing between the individual components to fur-
ther favor synergism, and (iii) the presence of different enzy-
matic activities (cellulolytic or hemicellulolytic) in the cellulo-
some that can remove “physical hindrances” of other
polysaccharides in heterogeneous plant cell materials.

Electron microscopy indicated that cellulosomes are com-
pact “fist”-like structures that open when attaching to micro-
crystalline cellulose, allowing local spreading of the catalytic
domains (Fig. 1B). Between the cellulosome and the cell wall
is a stagnant region in which contact corridors and/or glycoca-
lyces may be present, through which oligosaccharides remain
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in close proximity to the cell, restricting diffusion into the
environment (31). Cellobiose and soluble cellodextrin trans-
port are considered below (sec “Physiology of cellulolytic mi-
croorganisms”).

Cellulosome architecture in other clostridia is less complex.
Taxonomically, the mesophilic C. cellulolyticum and C. josui
belong, together with the thermophilic C. thermocellum, to
group III within the Clostridiaceae. C. cellulovorans and C.
acetobutylicum belong to group I within the Clostridiaceae and
are more distant from C. thermocellum and C. cellulolyticum;
however, the cellulosome components of C. cellulovorans are
surprisingly similar to those of C. cellulolyticum. The cellulo-
some genes of these clostridia are clustered, and Tamaru et al.
(665) suggested that C. cellulovorans could have acquired its
cellulosome gene cluster through horizontal gene transfer
from a common ancestor. The cellulosome of C. cellulolyticum
is the best understood among mesophilic clostridia and is dis-
cussed as a model system here (43).

C. cellulolyticum cellulosomes vary from 600 kDa to about 16
MDa and, apart from the scaffoldin (CipC), may contain at
least 13 distinct catalytic proteins. The CipC scaffoldin contains
eight cohesins, two X-modules, and a family III CBM. As with
C. thermocellum, exoglucanases form the major catalytic do-
mains present in the cellulosome. CelE and CelF, exoglu-
canases (cellobiohydrolases) with opposite processivity, are al-
ways present in the C. cellulolyticum cellulosome (206, 513).
The crystal structure of CelF revealed the presence of a tunnel
(characteristic of processive exoglucanases); however, the tun-
nel may open into a cleft to allow endoglucanase-like entry of
a cellulose chain in amorphous cellulose. CelF is thus consid-
ered a processive endoglucanase (514) with cellobiose as major
product. Initially, small amounts of cellotriose are released, as
observed for CelS of C. thermocellum. The ability of CelF to act
on the interior of a cellulose chain may shed light on the
question of how the cellulosome retains two processive en-
zymes attached to the scaffoldin and working in opposite di-
rections.

ExgS is the major exoglucanase in the cellulosome of C.
cellulovorans (166). ExgS is homologous to CelS of C. thermo-
cellum and CelF of C. cellulolyticum (family 48 cellulases) and
probably fulfills a similar function in the cellulosome. It is
important to note that the cohesin-dockerin recognition is spe-
cies specific (436). Fiérobe et al. (188) used this feature of C.
thermocellum and C. cellulolyticum cellulosomes to engineer
chimeric miniscaffoldins and chimeric catalytic domains, and
they elegantly demonstrated two- to threefold synergism be-
tween the CelA endoglucanase and CelF exoglucanase of C.
cellulolyticum when associated with miniscaffoldins. Determi-
nation of the genome sequence of the noncellulolytic C. ace-
tobutylicum surprisingly revealed a cellulosome gene cluster
(495). The noncellulolytic C. acetobutylicum can hydrolyze
CMC but not amorphous or microcrystalline cellulose (621). It
is tempting to speculate that C. acetobutylicum was once cel-
lulolytic or that it fortuitously acquired the cellulosome gene
cluster through horizontal gene transfer. Clostridium sterco-
rarium is the only species from group III for which no cellulo-
some has been observed (606).

Ruminal bacteria of the genus Ruminococcus are phyloge-
netically related to, but do not fall within, the family Clostridi-
aceae. Recently, the presence of dockerin-like sequences in at

least seven of the cellulase and xylanase genes of Ruminococ-
cus flavefaciens and the production of 1.5-MDa cellulosome-
like structures on the R. albus cell surface in the presence of
cellobiose and organic acids (phenylacetic and phenylpropi-
onic acid) suggested that Ruminococcus species indeed pro-
duce cellulosomes (162). A large protein of 250 kDa was iso-
lated from R. albus cellulosomes, suggesting a possible large
scaffoldin. The structure of the R. albus cellulosomes differs
from that of the clostridia, suggesting an independent evolu-
tionary path (336, 500). Fibrobacter succinogenes S85 is another
efficient cellulolytic bacterium isolated from the rumen that,
like the ruminococci, actively adheres to cellulose (184). Al-
though the cellulases of F. succinogenes are cell associated, no
cellulosome structures have been identified, and it would be
interesting to know whether cellulose hydrolysis is mediated by
cellulosomes in this actively cellulolytic anaerobe.

Anaerobic chytrid fungi are only found in the rumens of
herbivorous animals (509) and produce highly active cellulases
(68, 103, 745, 759). High-molecular-weight complexes with
high affinity for microcrystalline cellulose have been isolated
from Piromyces sp. strain E2. Conserved noncatalytic repeat
peptide domains have been identified in cellulases and xyla-
nases from Neocallimastix and Piromyces species and are
thought to provide a docking function (180, 385). Recently,
Steenbakkers et al. (639) used PCR primers based on DNA
sequences that encode these 40-amino-acid cysteine-rich dock-
ing domains to recover the genes of several cellulosome-like
components. Preliminary data indicate the presence of multi-
ple scaffoldins; however they have not yet been isolated from
culture fractions (639). Evidence is thus mounting that anaer-
obic fungi also utilize cellulosomes for hydrolysis of crystalline
cellulose. Evolutionary convergence might have occurred be-
tween the anaerobic fungi and clostridia. However, the 40-
amino-acid dockerin sequence of the anaerobic fungi differs
significantly from those of the clostridia, suggesting indepen-
dent development of the cellulosomes of anaerobic fungi.

Highly cellulolytic anaerobic hyperthermophiles are found
in the genera Thermotoga (386) and Caldicellulosiruptor (549),
and cellulases isolated from these organisms are often highly
thermostable (66). A peculiar feature of the Caldicellulosirup-
tor hydrolases is the multidomain and multicatalytic nature of
these “megazymes.” Many of these megazymes contain five or
more domains, which can include a variety of cellulases, hemi-
cellulases, and CBMs (48, 211). The megazymes differ in the
number and position of catalytic domains and CBMs and could
have evolved via domain shuffling. It is also tempting to spec-
ulate that the megazymes are primitive alternatives to operons,
and could realize advantages associated with cellulosomes,
such as facilitating synergism between different catalytic do-
mains firmly attached to microcrystalline cellulose via multiple
CBMs.

Glycoside hydrolase families. Proteins are designated ac-
cording to their substrate specificity, based on the guidelines of
the International Union of Biochemistry and Molecular Biol-
ogy (IUBMB). The cellulases are grouped with many of the
hemicellulases and other polysaccharidases as O-glycoside hy-
drolases (EC 3.2.1.x). However, some of the auxiliary enzymes
involved, particularly in hemicellulose hydrolysis, also belong
to the group of glycosyltransferases (EC 2.4.1.x). Traditionally,
the glycoside hydrolases and their genes were named at ran-
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dom. The classification of the glycoside hydrolases has become
insufficient, with several thousand glycoside hydrolases identi-
fied during the last decade alone. An alternative classification
of glycoside hydrolases into families was suggested based on
amino acid sequence similarity (254). This classification has
been updated several times (255, 256), but with the exponential
growth in the number of glycoside hydrolases identified,
Coutinho and Henrissat have begun to maintain and update
the classification of glycoside hydrolases families at the Expasy
server (http://afmb.cnrs-mrs.fr/�pedro/CAZY/db.html) (124).
Families were defined based on amino acid sequence similar-
ities. There is usually a direct relationship between the amino
acid sequence and the folding of an enzyme, and as the tertiary
structures of many proteins were added, it became clear the
families contain basic enzyme folds (257). At the latest update
(26 July 2001), more than 5000 glycoside hydrolases were
grouped into 86 families. Thus far, CBMs have been divided
into 28 families.

Classification of glycoside hydrolases into structurally deter-
mined families provides valuable insights that extend and com-
plement the functionally oriented IUBMB classification. The
family classification scheme reflects the structural features of
the enzymes, which are more informative than substrate spec-
ificity alone because the complete range of substrates is only
rarely determined for individual enzymes. Once a 3-D struc-
ture in a family is known, it can be used to infer the structures
of other members of the family. Tertiary structure, particularly
at the active site, dictates the enzyme mechanism, and thus
families also contain members whose enzyme mechanism is
either inverting or retaining. Often enzymes contain multiple
domains that belong to the glycoside hydrolase and glycosyl-
transferase groups. Classification into families defines the
modules of such enzymes and resolves the contradiction about
substrate specificity for multifunctional enzymes. The family
classification also sheds light on the evolution of the glycoside
hydrolases. Some families contain enzymes with different sub-
strate specificities; for example, family 5 contains cellulases,
xylanases, and mannanases. This suggests divergent evolution
of a basic fold at the active site to accommodate different
substrates. At the same time cellulases (hydrolyze �-1,4-glyco-
sidic bonds) are found in several different families [families 5,
6, 7, 8, 9, (10), 12, 44, 45, 48, 61, and 74], suggesting convergent
evolution of different folds resulting in the same substrate
specificity. Some families are deeply rooted evolutionarily,
such as family 9, which contains cellulases of bacteria (aerobic
and anaerobic), fungi, plants (141), and animals (protozoa and
termites [723]). In contrast, family 7 contains only fungal hy-
drolases whereas family 8 contains only bacterial hydrolases.
Furthermore, cellulases from several families, and thus from
different folds with either an inverting or retaining mechanism,
are found in the same microorganism (for example, the C.
thermocellum cellulosome contains endoglucanases and exo-
glucanases from families 5, 8, 9, and 48 [621]). Cellulases are
thus a complex group of enzymes that appear to have evolved
through convergence from a repertoire of basic folds. It is
tempting to speculate that the pervasive diversity within the
cellulase families reflects the heterogeneity of cellulose and
associated polysaccharides within plant materials and diversity
of niches where hydrolysis takes place. It might be also that
nature has not yet fully optimized enzymes for the efficient

hydrolysis of recalcitrant insoluble microcrystalline cellulose.
In the era of microbial genomics, the large body of information
obtained about sequence-structure relationships of existing
members of the glycoside hydrolase families allows for the
searching of putative glycoside hydrolases in cellulolytic and
noncellulolytic microorganisms for which the genome se-
quence has been determined (258).

The classification of cellulases and other plant cell wall-
hydrolyzing enzymes into families not only allows access to
information on the structure, mechanism, and evolutionary
origin but also structurally orders the ever-increasing list of
newly identified hydrolases into functional groups. Henrissat et
al. (260) recently proposed a new nomenclature for hydrolases
in which the first three letters designate the preferred sub-
strate, the next digits designate the glycoside hydrolase family,
and the following capital letters indicate the order in which the
enzymes were first reported. For example, the three enzymes
CBHI, CBHII, and EGI of T. reesei are designated Cel7A
(CBHI), Cel6A (CBHII), and Cel6B (EGI). When more than
one catalytic domain is present, it is reflected in the name, such
as Cel9A-Cel48A for the two catalytic domains of CelA of Cal-
docellulosiruptor saccharolyticus. However, researchers have
still not completely embraced this new nomenclature. Two
possible reasons for this could be (i) hesitance to let go of the
established nomenclature and (ii) lack of substrate specificity,
for instance the distinction between endoglucanase and exo-
glucanase/cellobiohydrolase activity. Because this discussion of
cellulase systems and their components focuses primarily on
catalytic functionality rather than structural relationships, the
older, functionally based nomenclature is used below as we
consider the molecular biology of cellulase enzymes.

Molecular Biology of Cellulase Enzymes

Regulation of cellulase production. For T. reesei the produc-
tion of enzymes for the utilization of complex substrates, such
as cellulose, is induced only in the presence of the substrate (or
products thereof) but suppressed when easily utilizable sugars,
such as glucose, are available. Because cellulose is insoluble
and cannot enter the cell, researchers have searched for the
natural “inducer(s)” of cellulases (643). Seiboth et al. (609)
used deletion mutants to examine the role of individual cellu-
lase enzymes to produce the inducer of other cellulases. De-
letion of either cbh2 or egl2 prevented the expression of other
cellulase genes, suggesting that CBHII and EGII may play a
role in the formation of the inducer. It is interesting that a
�cbh1 mutant increased the transcription of cbh2 more than
twofold. Fowler and Brown (194) revealed that deletion of the
bgl1 gene, which encodes the extracellular �-glucosidase
BGL1, resulted in decreased endoglucanase activities and a lag
in the transcription of cbh1, cbh2, egl1, and egl3, suggesting that
a �-glucosidase may be partially responsible for formation of
the inducer as well. As early as 1962, sophorose (�-1,2-glu-
cobiose) was identified as a strong inducer of cellulases in T.
reesei (423). It is assumed that sophorose is formed via the
transglycosylation of cellobiose by a �-glucosidase, possibly
BGLII of T. reesei (358, 691). However, it has not been dem-
onstrated conclusively that sophorose is the natural inducer of
cellulase production. Cellobiose, �-cellobiose-1,5-lactone, and
other oxidized products of cellulose hydrolysis, or even xylo-
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biose resulting from xylan hydrolysis, have not been ruled out
as the natural inducer(s). Moreover, the possibility that cello-
biose functions as an inducer is more complex because at high
levels it inhibits cellulase production (358). It should also be
noted that not only the production of cellulases but also the
production of hemicellulases is induced, presumably reflecting
the intertwined occurrence of these polymers in nature (429).

Production of cellulases by T. reesei is regulated at the tran-
scriptional level. Expression of the cellulase genes (cbh1, cbh2,
egl1, egl2, and egl5) of T. reesei QM9414 is coordinated through
transcription factors (296). The genes encoding the transcrip-
tional factors ACEI (585) and ACEII (18) were identified
based on their ability to bind to the T. reesei cbh1 promoter
region and subsequently their DNA sequences were deter-
mined. ACEII is homologous to XlnR (700), a transcriptional
activator identified in Aspergillus niger, and ACEII also stimu-
lates the expression of cellulase and xylanase genes.

The general carbon catabolite repressor protein CRE1 re-
presses the transcription of cellulase genes in T. reesei (295,
649, 663). The cellulase-hyperproducing T. reesei strain Rut
C-30 has a cre1 mutation and still produces cellulases in the
presence of glucose (295). The production of cellulases is re-
pressed by CRE1 in the presence of glucose, but a basal level
of production occurs in the absence of glucose (93). A link
between catabolite repression and the energy status of the cell
may exist. A study of four filamentous fungi revealed that
extracellular cellulase was repressed at intracellular ATP con-
centrations above 10�7 mg/ml and that cyclic AMP (cAMP)
played a role in derepression of enzyme synthesis (720). Basal
levels of cellulase production presumably allow the production
of the inducer through limited cellulose hydrolysis, which in
turn mediates further induction of cellulase production. The
mechanism by which sophorose or other inducers stimulate
transcription through the transcriptional activators ACEI and
ACEII is not clear yet.

Expression of the cellulase genes of T. fusca is also regulated
at two levels: induction by cellobiose and catabolite repression
in the presence of glucose (746). CelR represses cellulase pro-
duction in the absence of cellulose or cellobiose. However,
cellobiose acts as an inducer and inactivates CelR, thereby
facilitating its dissociation from promoters allowing transcrip-
tion of cellulase genes (635). Catabolite repression of cellulase
genes occurs in the presence of glucose and may be regulated
by cAMP levels, as indicated by studies done with Thermobifida
curvata (747, 760). Various strains of Cellulomonas have been
reported to produce high yields of cellulase on cellulosic sub-
strates and lower yields on xylan, galactomannan, starch, and
sugars (543). These data suggest that constitutive production
of cellulases at basal levels occurs in the absence of glucose and
that cellulase production is subjected to catabolite repression.
Cellulosic substrates, as well as cellobiose and xylose, at mod-
erate levels of 0.05 to 0.2 g/liter, serve as inducers for cellulase
production (566).

Cellulosome formation in C. thermocellum occurs under car-
bon-limited conditions, with conflicting statements in the liter-
ature about whether induction is important (39, 458, 621). In
cellobiose-grown C. thermocellum, celA, celD, and celF were
detected during late exponential and early stationary phase,
whereas celC occurred primarily in early stationary phase
(455). Cellulase production is thus presumably down-regulated

via catabolite repression. However, the composition of the
cellulosome may be influenced by the carbon source used; for
example, the major exoglucanase CelS is more prominent
when cells are grown on cellulose than when they are grown on
cellobiose (315, 458, 621). The cellulosome of C. cellulovorans
is produced on cellulose but not on soluble carbohydrates such
as glucose, fructose, cellobiose, or even CMC (60). However,
C. cellulovorans grown on cellobiose and CMC does exhibit a
high cellulase activity and transcription of cellulase genes. This
suggests that cellulases may be produced on certain soluble
carbohydrates, such as cellobiose, but that (poly)cellulosome
assembly and detachment from the cell wall need some “trig-
gering” from the presence of insoluble microcrystalline cellu-
lose (60, 166, 665). Analysis of mRNA transcripts in the rumi-
nal bacterium R. flavefaciens FD-1 has revealed somewhat
contradictory results. Doerner et al. (164) have reported that
the celA and celC genes were expressed constitutively while
expression of the celB and celD was induced by cellulose. How-
ever, Wang et al. (721) have reported that the cellodextrinase
celA and celE genes are both induced by cellulose.

Organization of cellulase genes. The genes encoding cellu-
lases are chromosomal in both bacteria and fungi. In the fungi,
cellulase genes are usually randomly distributed over the ge-
nome, with each gene having its own transcription regulatory
elements (683). Only in exceptional cases, such as for P. chryso-
sporium, are the three cellobiohydrolase-like genes clustered
(126). A comparison of the promoter regions of cbh1, cbh2,
eg1, and eg2 of T. reesei reesei revealed the presence of CRE1-
binding sites through which catabolite repression is exerted
(358). ACEI and ACEII activate transcription by binding to at
least the cbh1 promoter region (18, 585).

In bacteria, the cellulase genes are either randomly distrib-
uted (e.g., in C. thermocellum [228]) or clustered on the ge-
nome (e.g., in C. cellulolyticum, C. cellulovorans, and C. aceto-
butylicum [42, 43]). The cellulase gene cluster of C.
cellulovorans is approximately 22 kb in length and contains
nine cellulosomal genes with a putative transposase gene in the
3� flanking region. Similar arrangements have also been found
in the chromosome of C. cellulolyticum and C. acetobutylicum,
suggesting the presence a common bacterial ancestor to these
mesophilic clostridia or the occurrence of transposon-medi-
ated horizontal gene transfer events. Transcriptional termina-
tors could be identified within these large gene clusters; how-
ever, promoter sequences have not yet been found (665).

Both cellulolytic bacteria and fungi (aerobic and anaerobic)
primarily contain multidomain cellulases, with single-domain
cellulases being the exception (e.g., EGIII of T. reesei and EG
28 of P. chrysosporium [252, 592]). The most common modular
arrangements involve catalytic domains attached to CBMs
through flexible linker-rich regions. The CBM module can be
either at the N or C. terminus; the position is of little relevance
when considering the tertiary structure of the protein. This
arrangement is found predominantly in noncomplexed cellu-
lase systems. The enzymes of complexed systems (anaerobic
bacteria and fungi) are more diverse. Cellulosomal enzymes
contain at least a catalytic domain linked to a dockerin. How-
ever, some enzymes contain multiple CBMs, a immunoglobu-
lin-like domain (e.g., for CelE of C. cellulolyticum) (206), and
a fibronectin type III domain (CbhA of C. thermocellum) (785).
The most complex enzymes are those of the extremely ther-
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mophilic bacteria (48). The megazymes of the anaerobic hy-
perthermophile Caldicellulosiruptor isolate Tok7B.1 often have
two catalytic domains, usually a cellulase and a hemicellulase
domain (combinations from glycoside hydrolases families 5, 9,
10, 43, 44, and 48), linked through several CBM domains (211).

Gene duplication and horizontal gene transfer. The large
number of homologous cellulase genes observed within cellu-
lolytic organisms, between related organisms, or between dis-
tant organisms within a niche environment, such as the rumen,
suggest that chromosomal rearrangements and horizontal gene
transfer contributed to the current rich repertoire of cellulase
systems available. The presence of CBH1-like gene clusters in
P. chrysosporium (126) and the highly homologous CelK and
CbhA exoglucanases in C. thermocellum (786) suggests more
recent gene duplication events. The formation of cellulases
from the same family within a species but with different cellu-
lase activity, such as EGI (Cel6B) and CBHII (Cel6A) of T.
reesei, could represent more distant gene duplications, fol-
lowed by substrate specificity divergence. The development of
polyspecific families, such as the cellulases and hemicellulases
in family 5, may represent common ancestor genes that under-
went gene duplication followed by substantial divergence with
regard to substrate specificity. Examples are the CelE (endo-
glucanase) and CelO (cellobiohydrolase) of C. thermocellum
(621), as well as EGIII (endoglucanase) (587) and MANI
(mannanase) in T. reesei (638). The different arrangement of
catalytic domains and CBMs in the megazymes of the hyper-
thermophilic bacteria in all likelihood originated from inter-
genic domain shuffling through homologous or unequal cross-
over recombination events (48).

The role of horizontal gene transfer in the evolution of cellu-
lase systems has been expected, but only recently has evidence of
such events started to accumulate. The possibility that the cellu-
losomal gene cluster of C. cellulovorans could have been acquired
through a transposase-mediated transfer event was discussed
(665). The absence of introns in the glycoside hydrolase genes of
the anaerobic fungi (in contrast to aerobic fungi, which contain
introns in their glycoside hydrolase genes) raised suspicion that
the anaerobic fungi acquired their genes from bacteria. Garcia-
Vallvé et al. (203) systematically performed sequence homology
analysis between the glycoside hydrolase protein and DNA se-
quences of the anaerobic fungi and the ruminal bacterium F.
succinogenes. They also examined the G�C content and codon
bias of the glycoside hydrolase genes of anaerobic fungi as well as
the phylogenetic trees derived from the multialignment of or-
thologous sequences. Their analysis showed that the anaerobic
fungi in all likelihood acquired the genes for cellulase systems
from bacteria. The high microbial density in the rumen (1010 to
1011 bacteria per ml of ruminal fluid) and the consequent close
proximity between ruminal bacteria and fungi, provide ideal con-
ditions for horizontal gene transfer events to occur. Horizontal
gene transfer has been demonstrated in the rumen (468, 483),
suggesting genome plasticity in this niche environment that could
also allow the anaerobic fungi to acquired new genes (430).

Physiology of Cellulolytic Microorganisms

Substrate preference. The tremendous range of catabolic
diversity among microorganisms is one of the distinguishing
features of the microbial world. The range of this diversity

varies widely among individual species, from highly specialized
ones that can utilize only one or a few substrates as energy
sources to highly versatile species that can utilize over 100
compounds as the sole carbon and energy source. In general,
cellulolytic microbes lie near the specialist end of this contin-
uum. They are primarily carbohydrate degraders and generally
are unable to use proteins or lipids (or their components) as
energy sources for growth. Cellulolytic microbes native to soil
(e.g., the bacteria Cellulomonas and Cytophaga and most fungi)
can generally utilize a variety of other carbohydrates in addi-
tion to cellulose (493, 543, 550). Anaerobic cellulolytic species
(e.g., those of the genera Fibrobacter, Ruminococcus, and Clos-
tridium) are more limited in their carbohydrate range, growing
on cellulose and its hydrolytic products but often not on
monosaccharides, oligosaccharides, and polysaccharides based
on sugars other than glucose. C. thermocellum does not grow
easily or well on glucose (486), and both C. thermocellum and
R. albus use cellobiose in preference to glucose when both
substrates are present (486, 680). A few cellulolytic anaerobic
bacteria can utilize xylan (294). The specialist nature of the
anaerobic cellulolytic microbes probably results mainly from
the specialized enzymatic machinery for cellulose hydrolysis,
the significant metabolic effort devoted to its synthesis, and
other features peculiar to cellulose utilization. These charac-
teristics, along with the high caloric value and natural abun-
dance of cellulose itself, apply a significant selective pressure
on microbes for its utilization—particularly if the organism
develops a strategy for positioning itself in such a way as to
gain earliest access to the products of cellulose hydrolysis. A
specialist microbe, sufficiently well adapted to cellulose utili-
zation, is unlikely to starve in any habitat (natural or man-
made) receiving a periodic input of plant biomass.

Some of the more recently described anaerobic cellulolytic
species (Anaerocellum thermophilum [659], C. saccharolyticus
[549], and Halocella cellulolytica [622] display somewhat wider
carbohydrate utilization spectra, with compounds such as
starch and various monosaccharides variously reported to
serve as substrates. There appears to be a tendency for a
broader range of carbohydrate utilization in more extreme
environments (thermophilic or halophilic), perhaps as a con-
sequence of a smaller amount of cellulose input, possibly com-
bined with the presence of fewer competing species in these
habitats.

The nutrient requirements for growth of cellulolytic species
include available nitrogen, phosphorus, and sulfur, plus stan-
dard macro- and microminerals and various vitamins. A few
cellulolytic microbes have additional requirements (e.g., four-
and five-carbon branched-chain volatile fatty acids in the case
of the predominant ruminal cellulolytic bacteria). Although
additional nutrients present in complex media (e.g., peptones
and yeast extract) are not usually required, they often stimulate
the growth of individual strains, sometimes dramatically.

Adhesion and formation of cellulose-enzyme-microbe com-
plexes. Catabolism of cellulose involves both enzymatic depo-
lymerization of insoluble cellulose and cellular utilization of
the hydrolytic products. There are two primary strategies for
utilizing crystalline cellulose (Fig. 2). Aerobic bacteria and
fungi do not adhere (or adhere only weakly) to cellulose, pro-
duce noncomplexed cellulases, and oxidize hydrolytic products
to CO2 and water. Anaerobic bacteria and fungi display a
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greater tendency (or in some cases a requirement) to adhere to
cellulose, produce primarily complexed cellulases exemplified
by the cellulosome organelle, and produce a variety of fermen-
tation end products. As noted below, these two strategies are
not completely dichotomous, since various microbial species
show different combinations of these characteristics.

Cellulose hydrolysis requires prior binding of enzymes to
cellulose, either as an enzyme-substrate binary complex or as a
cellulose-enzyme-microbe (CEM) ternary complex. Some cells
with noncomplexed cellulase systems (e.g., Cellulomonas sp.
strain NRCC 2406 [714]) show a tendency to adhere to cellu-
lose, although such contact does not appear to be necessary for
cellulose utilization (322). In the fungus T. reesei, considerable
cellulase activity is located at the surface of growing hyphae
(90), and growth on corncobs in a fluidized bed reactor has
resulted in the formation of a biofilm �30 �m thick, which
presumably maintains the contact of hyphae with cellulose
(674). During degradation of plant cell walls, fungal hyphae
confined in the intercellular spaces in plant cell walls are in
close proximity to substrate even if they are not strictly “ad-
hering,” and in this confined environment, loss of enzymes and
hydrolytic products due to diffusion and convection is likely to
be limited.

For anaerobic bacterial species, adhesion of cells to cellulose
is much more common, and for some species it appears to be
a requirement for rapid and efficient cellulose hydrolysis. In
several species (e.g., C. thermocellum, C. cellulolyticum, and F.
succinogenes), extracellular cellulolytic activity can be readily
assayed in stationary-phase cultures, and culture supernatants
have served as the starting point for the isolation of dozens of
cellulase enzymes. Nevertheless, adhesion-defective mutants
of C. thermocellum display substantially reduced cellulose hy-
drolysis and these mutants are often unstable, reverting to an
adherent phenotype (32). In the early stages of batch culture
growth, C. thermocellum (32, 485, 737, 741), and C. cellulolyti-
cum (207) are found in close contact with cellulose, and adhe-
sion of C. thermocellum has been explained by the presence of
cellulose-binding modules within the cellulosome complex
(32), which are anchored to the cell via a type II cohesin
domain at the carboxyl terminus of the scaffoldin protein (see
the discussion in reference 621).

Among the ruminal bacteria, adhesion appears to be even
more pronounced than in the clostridia. F. succinogenes pro-
duces both a series of cellulose-binding proteins, some of
which have endoglucanase activity (454), and a thin glycopro-
tein glycocalyx that results in strong adhesion to cellulose
(360). As with C. thermocellum, adhesion-defective mutants of
F. succinogenes S85 show little or no capacity to degrade cel-
lulose and readily revert to the adherent phenotype (218, 453).
R. flavefaciens and R. albus produce thick, tenacious glycoca-
lyces (121, 734). For F. succinogenes and the ruminococci,
inhibition of cell-cellulose adhesion or detachment of cells
already adherent reduces or completely prevents cellulose uti-
lization (360, 555, 732). Thus, adhesion seems to be an impor-
tant strategy for cellulose utilization among anaerobic bacteria,
and the CEM ternary complex is likely to be the major agent of
cellulolysis.

The role of cell-free cellulases is less clear than that of
cellulase present as part of CEM complexes. While cell-free
enzymes may be capable of hydrolyzing cellulose in an in vitro

assay, these enzymes must compete in microbial cultures with
cell-adherent cellulases. During continuous growth of F. suc-
cinogenes (727) and R. flavefaciens (617) in cellulose-limited
chemostats, both CMCase and Avicelase activities were essen-
tially undetectable in culture supernatants despite high rates of
cellulose removal from the culture. It is unlikely that the lack
of cell-free cellulases was due to adsorption of extracellular
cellulases by cellulose, because the surfaces of the cellulose
particles were fully colonized by the bacteria and their glyco-
calyces, leaving no room for further adsorption of cell-free
enzyme. Among cellulolytic anaerobes there are no experi-
mental demonstrations to date that secreted cellulases make
up a major part of cellulolytic activity of actively growing cul-
tures, with the exception of Clostridium stercorarium (82, 606).

Adhesion, particularly when mediated via a sticky glycocalyx,
can in theory impart a number of advantages to the cellulolytic
microbe, including (i) providing a means of concentrating en-
zymes at the cellulose surface, (ii) permitting the cellulolytic
organism first access to the oligomeric products of cellulose
hydrolysis, (iii) protecting the ruminal microbe from the un-
desirable effects of protozoal grazing and attack by bacterio-
phages, and (iv) protecting hydrolytic enzymes from active
ruminal proteases. This last potential advantage has recently
been demonstrated experimentally (459). Overall, it is appar-
ent that the potential benefits of adhesion clearly outweigh the
additional expenditure of energy and biosynthetic precursors
required for synthesis of glycocalyx or cellulose-binding fac-
tors.

The general mechanisms of adhesion at the point of contact
to cellulose have recently been identified for several anaerobic
cellulolytic species (453). These include (i) the cellulosome
organelle, (ii) noncatalytic cellulose-binding proteins, (iii) gly-
cosylated moieties of the bacterial glycocalyx or of specific
binding proteins, and (iv) fimbriae or pilus-like structures. In
some cases, the involvement of a specific molecule within these
classes has been implicated, but in many cases the evidence is
indirect and is based on the determination of gene sequences
similar to those of adhesion components identified in other
species. Individual species appear to employ several of the
above mechanisms of adhesion. The rapid advances in our
understanding of the mechanisms of adhesion by ruminal cel-
lulolytic bacteria at the molecular level have been recently
reviewed (453). While glycocalyces appear to be important for
ruminal bacteria, additional research is needed to determine if
they are important for, or are even produced by, other anaer-
obic bacteria. Recently, Desvaux et al. (157) have suggested
that exopolysaccharide synthesis may represent a means of
dissipation of excess carbon by C. cellulolyticum; perhaps gly-
cocalyces have multiple functions for cellulolytic bacteria.

Uptake and phosphorylation of cellulose hydrolysis prod-
ucts. The driving force for uptake of glucose and its oligomers
appears to vary among cellulolytic species, although there is to
date no evidence for involvement of classical phosphoenol-
pyruvate (PEP)-dependent phosphotransferase systems. Non-
growing cells of C. thermocellum display uptake of [14C]cello-
biose and cellodextrins by a common, ATP-dependent system,
while glucose enters via a separate mechanism that is also ATP
dependent (651). Strobel (651) showed a sharp decline in the
transport rate accompanying the addition of inhibitors that
decreased intracellular ATP concentrations but not in re-
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FIG. 2. General strategies of cellulose hydrolysis and utilization by aerobic (top) and anaerobic (bottom) bacteria. Cellulose, degradation
products, and cellular features are not shown to scale. Some features of the alternate strategy type are utilized by one or more species. For example,
the cellulase of the anaerobe Clostridium stercorarium is of the noncomplexed type, and members of the facultatively anaerobic Cellulomonas utilize
an aerobic-type strategy for hydrolyzing cellulose but perform a mixed-acid fermentative catabolism of the hydrolytic products. Glycocalyces are
the dominant means of adhesion among ruminal cellulolytic bacteria, but the importance of such structures in other anaerobic groups has not yet
been systematically investigated. Refer to Fig. 1 for a more detailed comparison of complexed and noncomplexed systems at the enzymatic level.
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sponse to inhibitors that abolished the proton motive force.
These results are consistent with cellobiose and cellodextrin
transport via an ATP-binding cassette protein (ABC protein),
which is also a feature of the model for cellodextrin transport
for C. cellulolyticum proposed by Desvaux et al. (156). The
cellulolytic actinomycete bacterium Streptomyces reticuli pro-
duces an ABC protein that assists in the transport of cellobi-
ose, cellotriose, and possibly other cellodextrins (601). An
ABC protein associated with a xylan metabolism operon has
been identified based on DNA sequence data in R. flavefaciens
(21). By contrast, F. succinogenes utilizes a Na� electrochem-
ical gradient for uptake of glucose (195) and cellobiose (412),
and the Na� requirement for growth on cellulose suggests that
Na� may be the driving force for uptake of cellodextrins as
well (740).

The relative importance of different soluble cellulose hydrol-
ysis products (e.g., cellobiose and cellodextrins of various
lengths) as intermediates taken up by cellulolytic bacteria is
not in our view established. Microbial catabolism of glucose
and cellobiose has received decades of attention, and its study
predates the study of cellulose hydrolysis itself. By contrast,
utilization of cellodextrins (defined here as oligomers larger
than cellobiose and abbreviated here as Gn, where n is an
integer� 3) has received little attention, perhaps because pure
cellodextrins are commercially available only at a cost about 4
orders of magnitude greater than that of glucose. The cello-
dextrins G3 to G6 can be purified by column chromatography
of mixed cellodextrins, which can be prepared by acid hydrol-
ysis of pure cellulose (196, 447, 527). Yields of individual
cellodextrins G3 to G6 vary depending on the conditions of
hydrolysis, but they usually total 10 to 20% of the original
amount of cellulose (447, 618). There is evidence that even
purified cellodextrins contain trace amounts of chromato-
graphically distinct carbohydrate oligomers of unknown struc-
ture (240).

Pure and mixed cellodextrins are excellent growth substrates
for many carbohydrate-degrading bacteria, both cellulolytic
and noncellulolytic. Most ruminal carbohydrate-fermenting
bacteria that have been examined can grow on cellodextrin
mixtures at maximum rates similar to that of cellobiose (G2

[575]). Three cellulolytic ruminal strains (F. succinogenes S85,
R. flavefaciens FD-1, and R. albus 7) display Monod growth
kinetics on individual cellodextrins (618). For all three strains,
�max shows little variation with chain length but S0.5�max (the
concentration permitting growth at half the maximal rate) de-
clines with increasing chain length, most strongly for R. albus,
less strongly for F. succinogenes, and only slightly for R. flave-
faciens.

Cellulolytic anaerobes generally possess both an extracyto-
plasmic cellodextrinase that hydrolyzes cellodextrins

Gn ¡ Gx � Gy where x � y � n,

and intracellular cellobiose and cellodextrin phosphorylases
(CbP and CdP) that catalyze Pi-mediated (ATP-independent)
phosphorolysis reactions:

G2 � Piº G-1-P � Glc

Gn � Piº G-1-P � Gn�1

CbP is widely distributed in cellobiose-utilizing bacteria, both
anaerobic (9, 10, 23, 249, 667, 738, 740) and aerobic (600), and
the enzyme has even been found in the hyperthermophile
Thermotoga neopolitana (769). The CbP from Cellvibrio gilvus
is particularly interesting in that its wide glucosyl acceptor
specificity has permitted the in vitro synthesis of numerous
unusual di- and trisaccharides (670). By contrast, the distribu-
tion of CdP has not been systematically investigated, but the
enzyme has been purified from C. thermocellum (615) and its
presence has been inferred from labeling and metabolic studies
with a number of cellulolytic anaerobes (740). One or more
intracellular �-glucosidase enzymes that hydrolytically cleave
cellobiose or cellodextrins to glucose have been detected in
cellulolytic microbes (35, 297, 444, 446).

The simultaneous presence of extracellular cellodextrinase, in-
tracellular CbP and CdP activities, and intracellular �-glucosidase
in a variety of cellulolytic species suggests that cellodextrin and
cellobiose metabolism potentially can occur by several processes:
(i) extracytoplasmic hydrolysis with subsequent uptake and catab-
olism, (ii) direct uptake of followed by intracellular phosphoro-
lytic cleavage and catabolism, and (iii) direct uptake followed by
intracellular hydrolytic cleavage and catabolism. The relative im-
portance of these alternatives is not well understood in cellulolytic
bacteria with respect to metabolism of both cellodextrins and
cellulose. This matter is important because of the potential for
ATP production via the phosphorolytic cleavage of cellodextrins
and cellobiose, as developed further below (see “Bioenergetics of
microbial cellulose utilization”).

Knowledge of the relative extent of these reactions by grow-
ing cultures has been gained primarily through studies involv-
ing pure cellodextrins or mixtures of cellodextrins, rather than
cellulose, at extracellular concentrations far in excess of those
likely to occur in either natural or industrial environments.
Although environmental concentrations have not been deter-
mined directly, measurements in the rumen indicate that con-
centrations of glucose (0.06 to 0.8 mM) (114, 320, 378, 537) are
far higher than those of cellobiose (	0.02 mM) (321). Because
the concentration of glucose is almost the same as the total
concentration of reducing sugars, it is likely that cellodextrin
concentrations are very low. In cell extracts of R. albus, the
Vmax of phosphorolysis greatly exceeds that of hydrolysis (394),
while the reverse is true for the noncellulolytic bacterium Pre-
votella ruminicola (393). It is interesting that activities of CbP
in cell extracts of C. thermocellum are higher for cellulose-
grown cells than for cellobiose-grown cells (10). Because CbP
does not cleave G3 or higher oligomers and CdP does not
cleave G2, the data suggest a major role for CbP during growth
on cellulose even though its use provides less net ATP gain
than does CdP. On the other hand, Russell (575) showed that
cellodextrins are hydrolyzed extracellularly when added at mil-
limolar concentrations to a cellobiose-grown culture. It is likely
that the concentration of cellodextrins and the availability of
other growth substrates (e.g., cellulose or cellobiose) are im-
portant in determining the fate of cellodextrins as well as the
relative importance of phosphorolytic and hydrolytic cleavage.
Given the widespread occurrence of phosphorolytic and hy-
drolytic routes for cellodextrin metabolism in cellulolytic mi-
croorganisms, the possibility that this apparent redundancy is
of selective value bears consideration. Regulating the relative
flux via these two routes may provide a means to adjust the rate
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of ATP supply in response to environmental factors (e.g., avail-
ability of substrate or nutrients).

As discussed in more detail below (see “Bioenergetics of
microbial cellulose utilization”), cell yields increase markedly
with increasing cellodextrin chain length in several cellulolytic
organisms, and the cell yield on cellulose has recently been
shown to be substantially higher than that on cellobiose in C.
cellulolyticum. These data appear consistent with the following
hypotheses: (i) phosphorolytic cleavage of �-glucosidic bonds
occurs to a substantial extent relative to hydrolytic cleavage
and (ii) a substantial fraction of carbohydrate utilized during
growth on cellodextrins and cellulose is taken up directly as
cellodextrins.

With respect to the second of these hypotheses, we note that
it is very difficult to explain how the cell would derive any
benefit (reflected in higher growth yields relative to that ob-
tained on cellobiose) from growing on cellodextrins or cellu-
lose unless cellodextrins are taken up by the cell without being
first hydrolyzed to cellobiose. If further data support the notion
that cellodextrins are an important or perhaps primary form of
carbohydrate uptake in cells growing on cellulose, it will be of
interest to reconcile this with understanding based on enzy-
matic studies. As depicted in Fig. 3, it is likely that enzymatic
hydrolysis of oligomers is rapid relative to cellulose hydrolysis.
Thus, in the absence of cells, oligomers would not be expected
to accumulate and cellobiose would be the only apparent prod-
uct of cellulose hydrolysis, as is commonly observed. However,
the availability of cellodextrins at low concentrations does not
preclude cells from competing with extracellular enzymes for
these substrates, as suggested by cell yield data.

Both CdP and CbP are reversible enzymes (Keq 
 4 [9, 487])
whose equilibrium constants in vitro actually favor intracellular
synthesis of longer oligomers. Substantial losses of intracellular
cellobiose and cellodextrins from the cell can occur via oli-
gomer formation and secretion in growing cultures at high
substrate concentrations (740). The physiological and ecolog-
ical significance of this “cellodextrin efflux” is unclear, and it is
possible that this process does not occur to a significant extent
under substrate-limited microbial cellulose utilization. It has
been proposed that cellodextrin efflux provides a means of
feeding cellulose-nonadherent bacteria, both cellulolytic and
noncellulolytic. While the benefits of cellulose-adherent cells
feeding cellodextrins to nonadherent cells of the same species
are intellectually attractive, the feeding of other species might
seem counterproductive, were it not for the fact that some of
these species are capable of cross-feeding other essential nu-
trients (e.g., branched-chain volatile fatty acids) required by
some cellulolytic species (753). Moreover, cellodextrins may

have currently unidentified regulatory functions important in
controlling cellulolytic metabolism.

Equilibrium effects and reversibility may be manifested at
microbial as well as enzymatic levels. In general, much less
effort has been devoted to study of the effect of hydrolytic
products on the kinetics of cellulose hydrolysis by growing cells
than to the equivalent study of cell-free systems involving en-
zymes from both fungi (112, 279) and bacteria (see reference
458 for a review). Maglione et al. (416) noted the inhibitory
effect of the cellobiose analog thiocellobiose on cellulose uti-
lization by growing cultures of F. succinogenes S85, using fer-
mentative production of succinate as a measure of substrate
removal. These authors suggest that cellulose utilization in this
organism is sensitive to feedback inhibition, and that microbial
consumption of hydrolysis products is necessary for cellulolysis
to proceed.

Fermentative catabolism and end products. In strictly an-
aerobic, cellulolytic bacteria, G-1-P produced by the action of
either CbP or CdP is metabolized to glucose-6-phosphate, the
entry point to the Embden-Meyerhoff pathway of sugar catab-
olism. All of these species produce acetic acid and CO2 in
substantial amounts, and individual species vary with respect to
reduced products formed as a result of intracellular oxidation
of reduced pyridine nucleotides. For Clostridium species and R.
albus, ethanol and H2 are major reduced end products in pure
culture, and acetyl coenzyme A (acetyl-CoA) is a key branch
point associated with carbon flux to ethanol and acetate pro-
duction (226, 486). The ruminal species F. succinogenes and R.
flavefaciens produce large amounts of succinate, which in the
rumen is converted by other bacteria to propionate, a glu-
coneogenic substrate for the ruminant host. Succinate produc-
tion occurs via net fixation of CO2 by PEP carboxykinase, with
subsequent conversion of oxaloacetate to malate and succinate
(283, 448, 619). Lactate, produced in large amounts by many
rapidly growing saccharolytic anaerobes, is generally not a ma-
jor fermentation product in cellulolytic anaerobes, which have
relatively low growth rates even on soluble sugars (207, 619). A
notable exception is Anaerocellum thermophilum, the most rap-
idly growing of all cellulolytic bacteria, which produces lactate
as the major end product of cellulose fermentation (659). The
anaerobic chytridomycete fungus Neocallimastix frontalis pro-
duces ethanol, acetic acid, lactic acid, formic acid, H2, and CO2

as end products, while some other anaerobic fungi also pro-
duce succinic acid (676). In the anaerobic fungi, conversion of
a pyruvate intermediate to acetate, CO2, and H2 occurs in a
specialized organelle, the hydrogenosome, that contains pyru-
vate:ferredoxin oxidoreductase and hydrogenase (376). The
reader should consult comprehensive reviews (396, 458, 569)
for a more detailed consideration of the pathways by which
anaerobes ferment carbohydrates.

The distribution of end products produced by the branched
catabolic pathways of cellulose-fermenting anaerobes appears
to be the result of control of metabolic flux at several levels:
mass action effects involving the concentrations of intermedi-
ates, fermentation products, and electron carriers; enzyme ac-
tivity; and enzyme synthesis. While experimental evidence sup-
ports the importance of the first two determinants, there is to
date little evidence of transcriptional and translational control
of end product formation in cellulolytic bacteria. The ruminal
strains F. succinogenes S85 (727), R. albus 7 (516), and R.

FIG. 3. Hypothesis for the role of oligomers during microbially and
enzymatically mediated cellulose hydrolysis.
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flavefaciens FD-1 (617) generally display relatively little change
in the major fermentation end product ratios with changes in
growth rate, pH, or nature of the carbohydrate source (cellu-
lose or cellobiose), although R. flavefaciens does show a pro-
nounced shift in minor end products (from H2 to formate) with
increasing growth rate. C. cellulolyticum (156) and C. thermo-
cellum (22) display an increase in the ratio of ethanol to ace-
tate with increasing growth rate, and changes in end product
ratios have been observed in response to the presence of yeast
extract (226, 282, 519) in the medium. During growth of C.
cellulolyticum in complex medium, NADH/NAD� ratios as
high as 57 have been reported, suggesting that catabolism is
limited by the rate of NADH reoxidation (226, 519). Inability
to regenerate NAD� leads to metabolism of excess carbon via
phosphoglucomutase, with the G-1-P ultimately used for cel-
lodextrin synthesis and efflux, intracellular glycogen synthesis,
and extracellular polysaccharide production (225, 227). The
difficulty in reoxidizing NADH may explain why this species is
the only mesophilic cellulolytic organism reported to produce
lactate in excess of 0.5 mol per mol of hexose consumed (156).

High yields of solvents in lieu of organic acids have been
attributed to high concentrations of H2, often associated with
reduced agitation, for both cellulolytic (197, 369, 477) and
noncellulolytic (170, 456) anaerobes. When incubated at 7
MPa under nitrogen, ethane, or propane, C. thermocellum ex-
hibited an increased ratio of ethanol to acetate (47). Hydrogen
removal also dramatically lowers ethanol yields in favor of
acetate formation for cellulose fermentation by both C. ther-
mocellum (737) and R. albus (518). Ethanol production in
batch cultures of C. thermocellum was increased by the addi-
tion of acetate and lactate and decreased by the addition of
ethanol (266). However, addition of ethanol, acetate, or lactate
to the feed of xylose-limited continuous cultures of the non-
cellulolytic Thermoanaerobacterium (formerly Clostridium)
thermosaccharolyticum resulted in no steady-state change in
the ratio of ethanol to acidic end products (402). Removal of
ethanol from T. thermosaccharolyticum continuous cultures by
stripping a side stream withdrawn from the fermentor also
resulted in no change in the ratio of ethanol to acidic end
products (402). These results with T. thermosaccharolyticum
suggest that factors in addition to extracellular product con-
centrations can play an important, and in some cases domi-
nant, role in regulating fermentation product yields. Acetate
formation is favored relative to lactate and ethanol formation
for growth of C. cellulolyticum on cellobiose under carbon-
limited compared to carbon-sufficient conditions (225, 226).
With respect to noncellulolytic anaerobes, limitation by a nu-
trient other than the carbon source is a powerful modulator of
solvent formation in C. acetobutylicum (443, 572), for which
solvent formation is typically not growth associated. This, how-
ever, is not the case for T. thermosaccharolyticum (268), for
which solvent formation is growth associated.

Utilization of cellobiose (and probably cellodextrins) by the
facultatively anaerobic members of the genus Cellulomonas
resembles that of strict anaerobes such as C. thermocellum:
metabolism via intracellular CbP (25, 600), use of the Embden-
Meyerhoff pathway (331), and production of ethanol and ace-
tate as primary end products (113). The fact that cell yields of
Cellulomonas fermentans were similar under both aerobic and
anaerobic conditions (25) suggests that fermentative metabo-

lism is the dominant pathway even in the presence of O2,
although aerobic metabolism was accompanied by stationary-
phase acetate oxidation without further increase in cell mass.
Both acetate and low pH have been implicated in the inhibi-
tion of growth in mature Cellulomonas cultures (150).

Lack of a functional gene transfer system for most anaerobic
cellulolytic bacteria has impeded the elucidation of the details
of such physiological characteristics as cellodextrin utilization,
cellulase synthesis and regulation, glycocalyx synthesis, and
response to starvation. Sequencing of whole microbial ge-
nomes (currently in progress for C. thermocellum, F. succino-
genes, and R. flavefaciens) will ultimately provide many insights
on the genetic organization of the enzymes and associated
components of the cellulolytic machinery.

Ecological Aspects of Cellulose-Degrading Communities

Different habitats in which cellulose is widely available, by
their differing characteristics (water availability, oxygen avail-
ability, redox potential, temperature variability, and nutrient
status) have fostered the development of cellulose utilization
strategies that differ in enzyme architecture and presentation,
rate and extent of cellulolysis, ancillary hydrolytic activities,
fate of hydrolytic products, and interactions among cellulolytic
and noncellulolytic microbes. Most (perhaps all) microbes
thought to play a prominent role in cellulose hydrolysis in
nature have evolved strategies that bring the cell close to the
cellulose surface and give the cellulolytic organism “first ac-
cess” to hydrolysis products.

In soils, cellulose is available primarily in the form of litter
(dead plant material) that is relatively recalcitrant due to the
high lignin content of terrestrial plants. A lack of fixed nitrogen
and other nutrients may secondarily limit microbial growth,
and the low moisture content of soils often favors the growth of
fungi as the dominant cellulolytic biota (399). The fungal strat-
egy for cellulolysis involves extracellular cellulases that work
alongside lignolytic enzyme systems whose efficiency requires
the continuous production of active oxygen species (e.g., by
associated peroxidases). In one study, cellulolytic activity and
the production of 14CO2 from [14C]cellulose decreased with
soil depth (711), suggesting that cellulose utilization is largely
an aerobic process, and the primary cellulolytic bacterial iso-
lates were Cytophaga species, although Bacillus and Cellulomo-
nas strains were also isolated. In composting cattle manure,
filamentous bacteria from the genera Micromonospora, Cyto-
phaga, and Sporocytophaga were the most numerically abun-
dant isolates and fungi were much less abundant (215). As in
any isolation study, the identity of uncultured species and their
contribution to the biological process under study were un-
clear.

Because of its low lignin content, plant biomass produced in
aquatic environments is typically degraded by bacteria, which
are poor lignin degraders but are better adapted to an aquatic
lifestyle than are fungi. The settling of plant detritus to the
sediment layer establishes a localized zone of enrichment that
may be anoxic as a result of microbial activity, resulting in a
proliferation of anaerobic cellulolytic bacteria. Cellulolytic en-
zymes are presented more efficiently (e.g., as a polycellulosome
complex by cells adhering to cellulose) to maximize biosyn-
thetic economy and the capture of hydrolytic products. In
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poorly mixed aquatic habitats, hydrolysis of cellulose by se-
creted cellulases may be feasible, as suggested, for example, by
the predominance of Cytophaga (known to actively secrete
cellulases in culture) (322, 384, 421), in the removal of cellu-
loses experimentally immersed in lake water and at sediment
surfaces (275), or in removal of tulip poplar (Liriodendron
tulipifera) leaves or algal detritus in streamwater (73).

Utilization of plant cell walls in the digestive tracts of her-
bivorous animals resembles in many respects that of anaerobic
aquatic habitats, with the addition of a temporal constraint in
the form of the physical passage of materials through the tract.
In nonruminant animals, this rate of passage is too high to
permit extensive fiber digestion by the slow-growing cellulo-
lytic microflora; indeed, fiber is usually defined operationally in
human nutrition as the organic portion of a feed that passes
undigested through the tract. In ruminant animals, the reten-
tion time of plant fiber in the rumen is sufficiently long (48 h or
more in some species) to allow the growth of a fibrolytic mi-
crobial population whose extensive fiber utilization contributes
a major portion of the energy for the animal (707). The fibro-
lytic agents include both bacteria and Chytridomycete fungi.
The bacteria are quantitatively more important, and in low-
fiber diets the fungi are often absent (376). However, the fungi
appear to enhance degradation via physical penetration and
weakening of the plant cell walls (6, 7, 273). Both groups of
microbes ultimately are destroyed by the acidic conditions in
the ruminant’s abomasum, a process aided (in the case of
bacteria) by the production of lysozymes by abomasal tissue
(305, 545). The amino acids released from microbial cell pro-
tein are absorbed in the small intestine, thus contributing to
the protein nutrition of the ruminant.

In nature, cellulose utilization is carried out not by pure
cultures of microorganisms but by multiple cellulolytic species
coexisting with each other and with many noncellulolytic spe-
cies. While cellulolytic species may compete directly for cellu-
lose (104, 192, 193, 499, 616), both cellulolytic and noncellu-
lolytic species can compete for cellodextrin products of
cellulose hydrolysis, in cross-feeding of nutrients, and in pro-
duction of inhibitory compounds. A number of examples of
such interactions have been demonstrated in defined mixed
cultures (Table 2).

Of particular interest in the context of improving the bio-
conversion of cellulosic biomass are reports of synergistic in-
teractions among fibrolytic and nonfibrolytic bacteria grown on
authentic plant cell wall material (192, 193, 451, 452, 719). In
these examples, more complete utilization of cellulose and/or
hemicelluloses sometimes has been observed, apparently by
the simultaneous or sequential depolymerization of different,
intimately associated cell wall polysaccharides. It should be
noted, however, that almost all examples to date have been
restricted to improved extent (rather than rate) of utilization.

The basis for improved fiber utilization in mixed cultures
would seem unlikely to lie in the removal of either hydrolytic
products (which are typically maintained at low concentrations
even in monocultures) or fermentation end products (which
may build to substantial concentrations but which are not par-
ticularly toxic or inhibitory to growth of the producing organ-
ism at the concentrations encountered in nature or in labora-
tory culture). Instead, it appears likely that removal of certain
plant cell wall polysaccharides by one species or group of

microbes may improve the accessibility of a second group to
cellulose or to hemicelluloses. In this regard, it is interesting
that some cellulolytic bacteria can actively depolymerize cer-
tain hemicelluloses (particularly xylans) and pectins but cannot
effectively utilize the component monosaccharides and oligo-
saccharides, even in pure culture (i.e., in the absence of com-
petition from noncellulolytic species [192]). Moreover, the soil
bacterium Cellulomonas sp. strain ATCC 21399 synthesizes a
suite of hydrolytic enzymes when grown on cellulose but not
when grown on xylan, starch, or other substrates (543). This
suggests that in nature these cellulolytic species utilize xyla-
nases and pectinases primarily as tools to gain access to cellu-
lose; i.e., they have sacrificed a reasonably abundant energy
source (xylan or pectin) in exchange for an opportunity to
exploit an even more abundant energy source (cellulose) that
is utilizable by fewer competitors. Enzymatic cleavage of cell
wall linkages between cinnamic acid and arabinoxylans by Ru-
minococcus albus and Butyrivibrio fibrisolvens has been pro-
posed as another example of an activity whose primary func-
tion is to enhance accessibility of an organism to cellulose
(435).

The ease with which cellulolytic microbes establish mutual-
istic interactions with noncellulolytic microbes has important
implications in natural environments and in processes man-
aged for human benefit. In pure culture, anaerobic bacteria
that ferment cellulose generally produce a mixture of fermen-
tation end products that include acetic acid, CO2, and reduced
end products such as ethanol or succinate. In the presence of
H2-consuming procaryotes, reducing equivalents are directed
away from these reduced products and are instead used to
reduce protons to H2 gas. The ultimate reduced product of the
coculture depends on the nature of the H2-consuming symbi-
ont (285, 449, 450, 518, 684, 728, 737): methane (from CO2-
reducing methanogenic archaea), acetate (from CO2-reducing
acetogenic bacteria), or H2S (from sulfate-reducing bacteria).
The methanogenic process is widely exploited in the treatment
of domestic wastes to produce a biogas used to offset the power
costs of the treatment plant. In bioenergy scenarios that in-
volve the direct conversion of cellulose by pure cultures to fuel
ethanol (consolidated bioprocessing [CBP] [see “Process con-
figurations” below]), a means must be provided to prevent
contamination and growth by H2 consumers that would reduce
the ethanol yield via competition for reducing equivalents.

Rate-Limiting Factors in Nature

What, then, determines the rate of conversion of cellulose
fibers (containing many long chains of cellulose molecules) to
individual, shorter chains that are more easily hydrolyzed? This
question can be examined from the perspective of the cellulase
enzymes themselves and from that of the microorganism re-
sponsible for synthesizing the enzyme and utilizing the hydro-
lytic products. For enzymatic hydrolysis of natural celluloses,
several determinants of hydrolysis rate have been proposed,
including crystallinity, degree of polymerization, particle size,
pore volume, and accessible surface area (178). Evaluation of
the relative importance of these fine-structure features in de-
termining utilization is not straightforward. One of the conse-
quences of the fine-structure variability of cellulose is that it is
impossible to obtain a discrete population of particles with
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identical fine-structure features. Within any given cellulose
sample, there is a great degree of variability in the size and
shape of individual particles (718, 733). Measurements of fine-
structure features such as particle size, crystallinity, or surface
area yield average values for that population. Thus, these types
of experiments are restricted to comparing measurements of
hydrolysis or utilization among populations of particles and
their average structural characteristics. Although we cannot
obtain homogeneous populations of cellulose particles, we can
obtain populations that differ sufficiently from one another to
permit comparison with respect to their susceptibility to hy-
drolysis.

Even when considering a population of cellulose fibers, how-
ever, structure-utilization relationships are complicated by the
interrelationships among the various structural features. The

same structural discontinuities that contribute to increased
pore volume, for example, also serve to lower the average
degree of crystallinity. The unavoidable consequence of this
fact is that it is difficult to alter (e.g., by physical or chemical
treatments) one fine-structure feature without simultaneously
altering others. Thus, as noted by several workers (202, 730),
studies purporting to identify structural features that deter-
mine the rate of hydrolysis or utilization often have been over-
interpreted, due to a failure to measure or consider changes in
other structural determinants. Moreover, correlation is often
interpreted as causation, which in at least some cases appears
to be unfounded.

Crystallinity is widely regarded as a major determinant of
cellulose hydrolysis at both enzymatic and microbial levels.
Pretreatments of biomass that reduce crystallinity usually en-

TABLE 2. Examples of interactions between cellulolytic and noncellulolytic microorganisms in defined mixed culture

Cellulolytic organism Noncellulolytic organism Substrate Cultivation
method Effects of coculturing Reference

Clostridium thermocellum Methanobacterium
thermoautotrophicum

MCCa

cellobiose
Batch, 60°C Increased rate of cellulose

degradation; end product shifts
from ethanol to CH4 (via H2);
interspiecies H2 transfer
uncoupled at high growth rate
on cellobiose

737

C. thermosaccharolyticum Solka Floc Batch, 60°C 3-fold increase in ethanol
production rate

484

C. thermohydrosulfuricum Steam-expl.,
aspen

2-fold decrease in ethanol
production rate; decreased
soluble sugar accumulation

C. thermohydrosulfuricum Cellulose Increased rate of cellulose
degradation; relief of yeast
extract requirement through
cross-feeding of vitamins and
methionine

467

C. thermosaccharolyticum Solka floc, corn
stover

Batch, 60°C Increased ethanol selectivity 719

Fibrobacter succinogenes Selenomonas ruminantium Cellulose Batch, 39°C Utilization of cellulose fragments
by S. ruminantium, conversion of
succinate to propionate by S.
ruminantium

598

Ruminococcus albus Methanobrevibacter smithii MCC Continuous,
37°C

Methanogenesis via interspecies H2
transfer at all dilution rates; no
measurable change in cellulose
conversion or cell yield

518

F. succinogenes or
Ruminococcus flavefaciens

Prevotella ruminicola Orchardgrass or
alfalfa

Batch, 38°C Extent of cellulose digestion
increased in some cocultures

193

F. succinogenes or
Buytrivibrio fibrisolvens

Treponema bryantii Barley straw Batch, 39°C Increase rate and extent of
digestion of barley straw but not
of pure cellulose

361

Trichoderma harzianum Clostridium butyricum Cellulose
(undescribed)

Batch Products of aerobic cellulose
hydrolysis used by anaerobic,
N2-fixing Clostridium

712

Cellulomonas flavigena Azospirillum brasilense Filter paper,
wheat straw

Batch, 30°C Physical association observed
between cellulose degrader and
N2-fixing Azospirillum

239

Cellulomonas flavigena Xanthomonas sp. Alkaline-treated
bagasse

Continuous,
30–40°C

Higher �max in coculture than in
either monoculture

540

a MCC, microcrystalline cellulose.
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hance the hydrolysis of cellulose by fungal cellulases (191, 595),
but some pretreatments effective in enhancing hydrolysis have
been reported to increase crystallinity (see, e.g., reference 1;
additional references are given in “Pretreated substrates” be-
low). Studies with pure celluloses indicate that amorphous
celluloses are degraded 5 to 10 times more rapidly than are
highly crystalline celluloses by both fungal enzymes (202) and
ruminal bacteria (337, 729). On this basis, we would expect that
crystallinity should increase during the course of cellulose hy-
drolysis as a result of a more rapid removal of amorphous
material. Such measurements have yielded equivocal results.
For the bacteria Cellulomonas (149), F. succinogenes (727),
Clostridium cellulolyticum (156), and members of the ruminal
microflora (205), no significant changes in relative crystallinity
index (RCI; the most commmonly used estimate of degree of
interchain hydrogen bonding) were observed during growth on
cellulose. Similar observations have been reported with cell-
free systems (see “Rates of enzymatic hydrolysis” below).
Moreover, the correlation between RCI and rate of cellulose
removal is relatively weak among celluloses of moderate to
high crystallinity, in both enzymatic (95, 178, 191, 736) and
whole-cell (139, 149, 733) systems. The disparity in the results
from these studies may be partially explained by artifacts in the
measurement of RCI. These measurements are typically per-
formed by powder X-ray diffraction on dried material and can
change greatly during recovery and drying of cellulose from
biodegradation experiments or on suspension of dried cellulo-
sic substrates in aqueous media (730).

Since cellulose hydrolysis is a surface phenomenon, available
surface area is a potential determinant of hydrolytic rate, al-
though there remains some debate about what constitutes the
“available” surface area. Several studies have shown that the
pore structure of cellulosic materials can accommodate parti-
cles of the size of a cellulolytic enzyme (223, 224, 648, 678,
736), and good correlation has been observed between total
surface area (estimated from solute exclusion measurements
and assumed pore geometries) (647) and the rate of substrate
hydrolysis. Gama et al. (202), however, applying a modified
solute exclusion technique to five different celluloses, have
reported that cellulolytic enzymes do not penetrate the pore
structure of purified celluloses. Moreover, these workers point
out that effective cellulolysis requires synergism among several
enzymes, the combined size of which is larger than the micro-
pores that would accommodate a single enzyme. They con-
clude that “the external surface area, including the macro-
pores, represents a measure of the effective contact area
between cellulose and enzymes in the beginning of the reac-
tion. However, this contact surface is not, in itself relevant to
cellulose reactivity. . .because fragmentation can greatly in-
crease accessible surface area” (202). This is an intriguing
interpretation worthy of further study. Unfortunately, a mean-
ingful quantitative relationship between surface area and the
kinetics of cellulose hydrolysis did not emerge from their work,
in which cellulose disappearance was reported only after a
fixed incubation period (6 h). It is likely, however, that pore
structure is a much more important determinant of hydrolysis
in natural biomass materials than in purified celluloses, which
have relatively smooth surfaces and lower porosity. On the
whole, the relationship between surface area and hydrolytic
rate in cell-free systems is rather equivocal.

By contrast, the relationship between available surface area
and rate of cellulose digestion in whole-cell systems is strong
across a variety of independent measurement techniques, sug-
gesting that the available surface area is a more important
determinant of rate of hydrolysis or utilization than is crystal-
linity. In mixed ruminal bacteria, where cellulolytic enzymes
are retained primarily on the cell surface and the effective size
of the catalytic unit is the size of the bacterial cell, it is clear
that gross specific surface area (the external surface area ex-
cluding micropores) is an effective determinant of hydrolysis
rate (416, 733). For F. succinogenes, the rate of succinate pro-
duction from cellulose is directly proportional to surface area
measured by absorption of Congo red dye (416). For mixed
ruminal microbes, cellulose removal determined by weight loss
is directly proportional to the gross specific surface area of the
fiber, calculated from the measured dimensions of cellulose
particles (733).

Even if hydrolytic cleavage of bonds is moderately rapid,
cellulose hydrolysis may be impeded by the inability of en-
zymes to access additional substrate. This is likely to be due in
part to most cellulose chains being buried within the microfi-
brils. Moreover, coverage of some surface chains by the “foot-
print” of enzyme molecules (particularly those in a complexed
form) that covers many bonds (212) (see “Adsorption” below)
physically restricts the binding of additional enzyme molecules
to neighboring sites on the fiber. Finally, continued hydrolysis
of cellulose requires both excision and removal of hydrolytic
products from the site of attack to expose underlying cellulose
chains to the enzymes. Walker et al. (718) have made direct
measurements of the fragmentation of cellulose (i.e., the
breakdown of cellulose into smaller particles, resulting from a
separation of associated microfibrils or chains) resulting from
the action of T. fusca cellulase and have shown that fragmen-
tation precedes most of the release of reducing sugars. The
importance of fragmentation is suggested from comparisons of
the rate of weight loss of different cellulose allomorphs by pure
cultures of ruminal cellulolytic bacteria and by mixed ruminal
microflora (729). Allomorphs with virtually identical unit cell
dimensions and similar particle sizes and RCI values showed
considerable differences in rate of utilization, as measured by
weight loss during bacterial growth. The most slowly utilized
allomorphs (cellulose II and cellulose IIIII) were those that are
thought to contain—in addition to the intrachain and inter-
chain hydrogen bonds present in all crystalline allomorphs—
hydrogen bonds between adjacent sheets, which would impede
the fragmentation of microfibrils into individual chains. The
relationship between fragmentation and cellulose hydrolysis
has not been quantitatively addressed. Fragmentation would
be expected to result in an increased reaction rate with time
due to increased surface area. However, rates of cellulose
hydrolysis by growing bacteria have been found to be constant
or to decline with increasing substrate conversion (see “Kinet-
ics of microbial cellulose utilization” below), consistent with
the notion that factors other than increased surface area due to
fragmentation are the most important in determining hydroly-
sis rates.

As a microbial process, cellulose utilization is subject to
physical and chemical conditions in the environment. The ef-
fects of temperature are particularly dramatic. A comparison
of maximum growth rate across cellulolytic species reveals a
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strong dependence on growth temperature (see “Kinetics of
microbial cellulose utilization” below). Two other environmen-
tal parameters, pH and redox potential, affect the rate and
extent of cellulose utilization. Regenerated celluloses (dyed
cellophane strips) have been reported to be decomposed in
both the water column and the sediment in acidifying lakes in
Ontario (275). Rates of degradation (estimated from extrac-
tion of the dye from residual cellophane) were linear, suggest-
ing that the process was limited by microbial activity rather
than by the amount of substrate. Degradation rates were
roughly similar under oxic and anoxic conditions, and no
strong effects of pH on the rate of removal were observed,
although the role of microenvironments on the process was not
considered. By contrast, studies of leaf litter decomposition in
aquatic environments have shown a clear inhibition of leaf
litter mass removal under progressively acidic conditions (100,
198, 414). Inhibition of cellulose hydrolysis at low pH has also
been observed in soil (280).

Effects of pH on cellulose utilization have also been noted in
laboratory cultures. Anaerobic cellulolytic bacteria, like most
fermentative microbes, grow within a fairly narrow pH range.
In some habitats, pH fluctuations permit cellulose hydrolysis to
occur at pH values below those supporting growth of the cel-
lulolytic population. For example, substantial cellulose hydrol-
ysis can occur by ruminal bacteria at pH below 6.0, once the
bacteria have adhered to cellulose, synthesized a glycocalyx,
and initiated bacterial growth at a higher pH (471). Neverthe-
less, we know of no cellulolytic anaerobe that grows (increases
cell mass) at pH below 6.0, a fact that cannot currently be
reconciled with observations that cellulose removal in some
anaerobic mixed cultures is observed at pH as low as 4.5 (111)
and has an optimum near pH 5.

METHODOLOGICAL BASIS FOR STUDY

Prior to the availability of molecular techniques, the central
body of thought in microbial physiology was occupied with
phenomena such as the rate of cell growth and substrate uti-
lization, the overall stoichiometry of substrate utilization and
product formation, cell yields and the thermodynamic effi-
ciency of cell synthesis, substrate utilization for cell mainte-
nance, synthesis of key catabolic enzymes in response to cul-
tivation conditions (e.g., substrate availability and growth rate),
cell lysis and death, and the extent of metabolic coupling. For
microbial utilization of soluble substrates, a foundation of data
involving such phenomena is available for a wide variety of
organisms and the focus of physiological studies today is
largely at the molecular level. However, this foundation is in
general not available for microbial utilization of cellulose. In
particular, many important studies remain to be done before
our understanding of the physiology of microbial cellulose
utilization is advanced to the level of the understanding of
soluble substrate utilization in the mid-1970s. This situation
has arisen largely because of methodological difficulties dis-
tinctive to this line of inquiry: quantification of cells and en-
zymes in the presence of solids, and substrate delivery for
continuous culture.

Quantification of Cells and Enzymes in the
Presence of Solids

For soluble substrates, cell concentration is most commonly
measured directly via filtration and subsequent dry-weight de-
termination or indirectly via light scattering or cell counting.
Because of the presence of unutilized cellulose and/or insolu-
ble lignin-rich residues (in the case of lignocellulosic sub-
strates), application of these techniques to the study of micro-
bial cellulose utilization is not practical. Performing cell counts
would be feasible in cases where cells do not adhere to cellu-
lose, but this is often not the case (see “Adhesion and forma-
tion of cellulose-enzyme-microbe complexes” above). More
typically, performing cell counts would require enumerating
cells adhered to cellulose particles in three dimensions as well
as ensuring that a representative population of particles (e.g.,
with respect to size and extent of reaction) is considered. Ac-
curate cell counts are normally not possible for cellulosic sub-
strates by conventional methods.

Satisfactory methods are available for composite measure-
ment of the mass of cells and cellulase (e.g., in a filter cake or
pellet) involving cell lysis followed by analysis of total protein
(119, 156, 291, 324, 457, 516) or nitrogen (407, 735). Com-
pounds other than protein and nitrogen have been used in
studies involving solid substrates as indicators of cell concen-
tration, including phospholipids (190), DNA (244, 631), ATP
(677), glucosamine (154), dehydrogenase activity (209), chitin
(307), gene probes (640), and cell-specific antibodies (364).
Metabolic measurements (e.g., of nutrient consumption, CO2

or heat evolution, and product formation) provide an addi-
tional class of methods that have been applied to the determi-
nation of cell concentration in the presence of solid substrates
(98, 324). Such measurements are useful if the cell yield rela-
tive to the measured quantity is known with certainty from
prior work, which is seldom the case for cellulolytic microor-
ganisms. Techniques based on physical changes in the medium
accompanying growth such as dielectric permittivity (242) and
osmotic pressure (16) have been proposed, as have methods
based on deconvolution of light-scattering data (323), but to
date they have not found widespread applicability in the pres-
ence of cellulosic substrates. The reader is referred to Kennedy
et al. (324) for a review of work related to measurement of cell
mass in the presence of soluble substrates prior to 1992.

A significant set of questions related to microbial cellulose
utilization require that cell and cellulase concentrations be
determined independently of each other (411). Questions in
this category include the determination of mass yields of cells
and cellulase (grams per gram of substrate), the way these
yields vary as a function of growth conditions, cell- and cellu-
lase-specific hydrolysis rates (grams of cellulose hydrolyzed per
gram of cells per hour or grams of cellulose per gram of
cellulase per hour), the control of cellulase synthesis (e.g., in
relation to different growth rates and substrates), and the ATP
demand and “metabolic burden” associated with cellulase syn-
thesis and growth on cellulose. Differential measurement of
cell and cellulase concentrations is complicated because cellu-
lase components or complexes are usually distributed among
the culture broth, the cell surface, particulate biomass, and
cellulose-enzyme-microbe complexes. In the frequent case
where a significant fraction of the cellulase is retained on the
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cell surface, physical separation of cells and cellulase using
described techniques is generally impractical. Because of these
factors, few if any studies report quantitative data for the mass
concentration of cells and cellulase accompanying microbial
cellulose utilization.

Lynd and Zhang (411) have performed an analysis of mea-
surement errors associated with various approaches for inde-
pendently determining cell and cellulase concentrations. For
cell concentration measurement, acceptable accuracy is ex-
pected when the concentration of a cell-specific component
(e.g., DNA) is determined or when total protein concentration
is determined in conjunction with a measurement specific to
cellulase. Acceptable accuracy is not expected for most condi-
tions if the cell concentration is based on either determination
of simultaneous protein and nitrogen concentrations or on
measurement of total-solids concentration in conjunction with
a measurement specific to cellulase. For cellulase concentra-
tion measurement, acceptable accuracy is expected only when
a measurement specific to cellulase is used and in general not
when the cellulase concentration is based on the measurement
of a component common to cellulase and cells such as protein,
nitrogen, or dry weight. Enzyme-linked immunosorbent assay
would appear to be a logical choice for a measurement specific
to cellulase. This method has been used to detect and/or quan-
tify concentrations of cellulase components (53, 189, 353, 491,
492) although thus far not to infer the overall concentration of
cellulase enzymes.

Continuous Culture and Substrate Delivery

Continuous culture is the primary tool used to examine
physiological characteristics of microorganisms in relation to
growth rate. In addition, a variety of kinetic measurements can
be made much more reliably—often by an order of magnitude
or more—via replicated measurements of steady-state contin-
uous cultures than derivative measurements made on transient
batch cultures.

Quantities such as growth rate, hydrolysis rate, cell and
cellulase yields, and the cell- and cellulase-specific hydrolysis
rates can in principle be calculated from steady-state continu-
ous culture data by using relatively simple equations (Table 3).
For both soluble and insoluble cellulosic substrates, the growth
rate may be arbitrarily set by varying the dilution rate (volu-
metic flow rate/working volume, units of inverse time). Based

on mixing considerations only, at least three residence times
are required following a change in input conditions (e.g., feed
concentration or dilution rate) before a steady state is reached.
Transient responses due to natural selection operative in the
chemostat environment can require substantially longer peri-
ods before they are complete. At dilution rates typical of cel-
lulose-grown chemostats, attainment of steady state usually
requires several days and may require more than a week.

Cellulose-grown continuous cultures are similar to continu-
ous cultures grown on soluble substrates with respect to the
concepts of balanced metabolism and substrate limitation.
Once steady state has been achieved as indicated by constant
values for extracellular variables (e.g., substrate, cell, and prod-
uct concentrations) over time, chemostat cultures can be said
to exist in a state of “balanced metabolism” in that their com-
position and the concentrations of intracellular metabolites are
not changing significantly with time. Although this condition is
similar to that exhibited by exponentially growing cells, steady-
state chemostat cultures do not exhibit an exponential increase
in cell concentration with time. The condition of substrate
limitation, often desirable in chemostat studies, corresponds to
the situation where an increase in the concentration of a given
substrate (e.g., the carbon and energy source) would increase
the rate of growth whereas an increase in the concentration of
other substrates would have little or no such effect. As with
soluble substrates, it is not necessary that the fermentor sub-
strate concentration be zero in order for a culture to be cellu-
lose limited.

Cellulose-fed chemostats differ from chemostats grown on
soluble substrates with respect to the functional dependence of
the effluent substrate concentration on the feed substrate con-
centration. Theoretical analysis based on either first-order or
variable-order models for cellulose utilization kinetics (see,
e.g., reference 633) indicate that the effluent cellulose concen-
tration at a given dilution rate increases with increasing feed
substrate concentrations. This phenomenon has also been ob-
served experimentally for cellulose grown continuous cultures
of both cellulolytic microorganisms (158, 407) and noncellulo-
lytic microorganisms with added cellulase (632). By contrast,
the effluent substrate concentration is the same regardless of
the feed substrate concentration according to classical chemo-
stat theory (630), and this result is routinely confirmed exper-
imentally for soluble substrates.

TABLE 3. Equations for calculating parameters relevant to microbial cellulose utilization based on continuous culture data

Parameter Units Symbol Equationa

Growth rate 1/h � � � D
Hydrolysis rate g of cellulose/liter/h rS rS � D�S0 � S�

Cell yield g of cells produced/g of cellulose consumed YX/S YX/S �
X

S0 � S

Cellulase yield g of cellulase produced/g of cellulose consumed YE/S YE/S �
E

S0 � S

Cell-specific
hydrolysis rate

g of cellulose/g of cells/h rS
X rS

X � D
�S0 � S�

X
� D

S0 � S
YX/S�S0 � S�

�
D

YX/S

Cellulase-specific
hydrolysis rate

g of cellulose/g of cellulase/h rS
E rS

E � D
�S0 � S�

E
� D

S0 � S
YE/S�S0 � S�

�
D

YE/S

a Symbol definitions: D, dilution rate (h�1); S0, feed cellulose concentration (g/liter); S, fermentor substrate concentration (g/liter); X, cell concentration (g/liter); E,
cellulase concentration (g/liter).
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Whereas many thousand papers report continuous cultiva-
tion of microorganisms on soluble substrates, there are but a
few dozen papers involving continuous cultivation of microor-
ganisms in submerged culture with insoluble cellulose as the
growth substrate since Hobson (274) first considered this pos-
sibility. We suspect that the primary reason for this is that the
apparatus for continuous culture on cellulosic substrates, and
substrate delivery in particular, is more complex than for sol-
uble substrates. The relatively long times required for contin-
uous culture on cellulose and complications associated with
cell concentration measurement may be additional contribut-
ing factors.

As summarized in Table 4, most studies of cellulose-grown
chemostats have involved refined (often delignified) cellulosic
substrates of a rather fine particle size (typically �50 �m) at a
concentration between 5 and 25 g/liter. Substrate delivery has
most commonly been achieved via a peristaltic pump, although
other methods have been used. The range of applicability of
peristaltic pumps for delivery of cellulosic substrates depends
on the substrate particle size and slurry viscosity, solids con-
centration, and scale. In general, peristaltic pumps are not

suitable for substrate delivery at high concentrations and/or
large particle sizes.

In carrying out continuous culture on cellulosic substrates,
care must be taken to ensure that the substrate is uniformly
suspended in the feed reservoir, which is necessary for delivery
of a representative and constant feed sample as the reservoir
empties. Attention to the suspension of the substrate in the
fermentor is also important. A nonuniform distribution of par-
ticles substantially complicates the interpretation of chemostat
data, especially when it is not detected, although solids reten-
tion may be advantageous in an applied context. Uniform sub-
strate dispersion in the feed reservoir can be verified by show-
ing that the particulate substrate concentration in the reservoir
is uniform with respect to height and time (as the medium is
fed into the fermentor) and/or by showing that substrate con-
centrations are the same in the feed reservoir and in a sub-
sample of the medium fed to the fermentor. Similarly, uniform
substrate dispersion in the fermentor can be verified by show-
ing that the substrate concentration is uniform with respect to
height in the fermentor and/or that the substrate concentra-
tions in the fermentor and fermentor effluent are the same.

TABLE 4. Continuous culture using cellulosic substrates

Substrate and organism(s) Feed concn
(g/liter)

Particle size
(�m) Substrate delivery Feeding interval Reference(s)

Pure cultures of cellulolytic micoorganisms
Anaerobic

Ball-milled filter paper; Ruminococcus
flavefaciens, Fibrobacter succinogenes,
Ruminococcus albus, Clostridium
polysaccharolyticum

1 Pinch valve Variable 337, 338, 469

Avicel, pretreated wood; Clostridium
thermocellum

5–14 20, 250 Peristaltic pump 	1 min 407, 409

Avicel; Ruminococcus albus, Methanobrevibacter
smithiti

11 20 Recirculating loop
and valve

60 min 450, 516–518

Unspecified; thermophilic isolate 10 Peristaltic pump 620
Avicel; Piromyces sp.  Methanobacterium

formicum
5 20 Peristaltic pump 30 min 675

Sigmacell; Ruminococcus flavefaciens,
Fibrobacter succinogenes (Selenomonas
ruminantium or Streptococcus bovis)

5 45 Peristaltic pump with
segmented gas/
liquid delivery

	1 min 104, 157, 158, 617, 727,
735, 740

Aerobic
Cerelose; Trichoderma viride (reesei) 25 Peristaltic pump 84
Avicel; Thermomonospora sp. strain N-35 5 Peristaltic pump with

recirculation loop
Continuous 445

Solka Floc; Trichoderma reesei 20 250
Purified powdered cotton; Trichoderma reesei 5 53 Peristaltic pump 210
Ball-milled wood; Trichoderma viride (reesei) 5–11 Peristaltic pump 15 min 535

Pure cultures of noncellulolytic microorganisms with
added cellulase

Delignified rice straw; Pichia stipitis 10 286, 287
Paper sludge; Saccharomyces cerevisiae 100–200 Solid Piston pump 8 h Z. Fan and L. R. Lynd,

submitted
Pretreated wood; Saccharomyces cerevisiae 8–100 250 Progressing cavity

pump
1 min 632

Nonsterile mixed cellulolytic cultures
Avicel; cellulosic enrichment 4–14 20, 50 Pump (unspecified) Intermittent 111
�-floc; anaerobic digester inoculum 5–23 Daily 213
Paper; thermophilic enrichment from compost 10 2,000–3,000 Daily 344
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Sterilization of large laboratory vessels (e.g., 20-liter carboys)
containing cellulosic substrates also presents potential compli-
cations. In particular, longer sterilization times are often re-
quired due to impeded convection in cellulose slurries.

QUANTITATIVE DESCRIPTION OF
CELLULOSE HYDROLYSIS

Quantitative description of cellulose hydrolysis is of poten-
tial value in two contexts: (i) for structuring and testing our
fundamental understanding and (ii) for designing and evaluat-
ing engineered systems based on quantitative models. Only
fundamental aspects are considered in any detail in this sec-
tion, although it is intended that the discussion be of value to
those examining microbial cellulose utilization from applied
perspectives as well.

Cellulase enzyme systems are composed of multiple proteins
that interact by performing complementary functions related
to cellulose hydrolysis and in some cases by forming multipro-
tein complexes (see “Cellulase enzyme systems” above). Be-
cause of such interactions, different behavior is exhibited when
cellulase system components are present in combination as
compared to when they are present in isolation. Cellulosic
substrates are typically present as insoluble macroscopic par-
ticles with a distribution of sizes, shapes, and, in some cases,
composition. Both cellulosic substrates occurring in nature and
those resulting from pretreatment processes typically contain
lignin, to which many cellulase components bind. Naturally
occurring cellulosic substrates and some pretreated substrates
also contain hemicellulose, which impedes access of cellulase
components to 1,4-�-glucosidic bonds and may require for
hydrolysis enzymatic activities distinct from those involved in
cellulose degradation. Kinetic properties (e.g., adsorption ca-
pacity and affinity, substrate reactivity), chemical properties
(fractional composition of different components), and physical
properties (size, shape, density, and rigidity) generally vary
over the course of hydrolysis. Cellulolytic organisms impact the
rate of cellulose hydrolysis at least by determining the rate of
cellulase production. Cellulase production by cellulolytic mi-
croorganisms is in turn determined by the interaction of mul-
tiple complex processes and variables of both an intracellular
and extracellular nature. The presence of microorganisms in
CEM complexes may impact cellulose hydrolysis with respect
to features other than cellulase production (see “Kinetics of
microbial cellulose utilization” above).

Given the above-listed enzymatic, substrate, and organismal
properties, as well as the interactions among these properties,
microbially mediated cellulose hydrolysis is an exceedingly
complex phenomenon. The full extent of this complexity is not
represented in any quantitative model proposed to date. All
such models represent simplifications of the real situation,
although this should not be taken as an impeachment of the
utility of such models in either fundamental or applied con-
texts.

Depending on the purpose at hand, either a relatively simple
or complex model may be sufficient. Within each subject area
considered below, models are considered in a sequence
roughly corresponding to their level of complexity. In several
cases, we suggest structures for models that have not yet been
developed in any detail. We do this with the hope of providing

a framework helpful in identifying types of information re-
quired to develop a more complete understanding of microbial
cellulose utilization at both the conceptual and quantitative
levels. Care is taken in the discussion that follows to identify
the enzymes and substrates used, and we suggest that caution
is appropriate in generalizing results from one system to an-
other.

Adsorption

Carbohydrate binding modules (CBMs) of cellulase en-
zymes readily adsorb to accessible sites on a cellulose-contain-
ing substrate particle to form a complex held together by spe-
cific, noncovalent interactive forces. Catalytic domains of
cellulase system components may in some cases specifically
adsorb to cellulose independently of CBMs, although this is
generally thought to be less important than binding involving
CBMs in the context of understanding and describing hydrol-
ysis mediated by non-fractionated cellulase systems. Cellulase
may also adsorb to lignin, which is thought to be nonspecific
(506, 671). Formation of enzyme-cellulose complexes is a pre-
requisite for cellulose hydrolysis, and such complexes are a
central feature of most conceptual and quantitative models for
cellulose hydrolysis. Working with 26 cellulase preparations, 10
of them highly purified, Klyosov (347) showed a strong corre-
lation between hydrolysis rates and values of the adsorption
equilibrium constant.

Quantitative description of the adsorption of cellulase(s) to
cellulose generally involves expressing the concentration of a
cellulose-enzyme complex as a function of a vector of variables
relevant to cellulase adsorption that describe the state of the
system. In most adsorption models, such “state variables” in-
clude the total amount of cellulase present, the total amount of
substrate present, substrate-specific and enzyme-specific pa-
rameters that impact adsorption (e.g., affinity and capacity),
and variables that describe the physical and chemical environ-
ment (e.g., temperature and ionic strength). Experimental de-
termination of the concentration of cellulose enzyme complex,
[CE], is usually carried out by taking the difference between
total cellulase present and unadsorbed cellulase, e.g. for a
substrate containing only cellulose:

�CE� � �ET� � �E� (1)

where [ET] is the total concentration of binding sites on the
enzyme and [E] is the concentration of binding sits on the
enzyme not adsorbed to cellulose. Techniques for direct mea-
surement of adsorbed enzyme would be desirable but are sel-
dom employed (426).

Equilibrium is assumed in many adsorption models. The
equilibrium assumption is often justified by the observation
that the time required for adsorbed cellulase to reach a con-
stant value is short relative to the time required for hydrolysis.
Most studies find that adsorbed cellulase reaches a constant
value in �90 mins, and many studies have found �30 min to be
sufficient (74, 105, 332, 333, 334, 373, 508, 548, 625, 651, 652),
whereas complete hydrolysis of cellulose usually requires a day
or more. The simplest representation of adsorption equilib-
rium is via an equilibrium constant, Kd:

Kd � �E��C�/�CE� (2)
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where [C] is the concentration of accessible binding sites on
cellulose not adsorbed to enzyme. Kd, [E], [C], and [CE] are
taken here to have units of micromoles per liter. Other inter-
nally consistent units can also be used, and the use of units
other than micromoles per liter for Kd is considered below. As
an alternative to equilibrium models, some models (117, 488,
490) employ a dynamic description of adsorption such as

d�CE�/dt � kf�E��C� � kr�CE� (3)

where kr/kf � Kd.
Studies by Rabinovich et al. (described in reference 347)

involving various cellulases and cellulose samples indicate that
once a cellulase-cellulose complex is formed, the enzyme stays
bound to the cellulose for a significant period (e.g., 30 min or
more), during which hundreds of catalytic events occur. Sur-
face diffusion rates of Cellulomonas fimi cellulase components
on microcrystalline cellulose have been measured by Jervis et

al. (312) and appear not to be rate limiting. Soluble sugars have
no influence on adsorption behavior in cases where this has
been examined (506, 507), although inhibition of adsorption by
unidentified compounds in protein-extracted lucerne fibers has
been reported (654).

Values for maximum binding capacities (enzyme per unit
substrate) and affinity constants (1/Kd) are presented in Table
5 for both isolated cellulase components and cellulase mixtures
and complexes as well as several substrates. It is notable that
reported values for adsorption parameters for the same en-
zyme-substrate system differ by as much as an order of mag-
nitude. The binding capacity of bacterial microcrystalline cel-
lulose (BMCC) is higher than that of Avicel for both cases for
which comparative data are available (T. fusca and T. reesei).
The binding capacity of pretreated wood is similar to that of
Avicel for the T. reesei system, but the C. thermocellum system
exhibits a 19-fold-higher capacity for pretreated wood than for

TABLE 5. Summary of cellulase adsorption parametersa

Organism, substrate and temp
Binding capacity Binding affinity

Reference
mg/g �mol/g �mol/�molb Liters/g Liters/�mol

Components
Cellulomonas fimi (30°C)

CenA BMCC 144 3.1 5.0 � 10�4 41 1.89 212
Cex BMCC 184 3.6 5.8 � 10�4 33 1.71

Thermobifida fusca (50°C)
E3, Avicel 26 0.4 6.5 � 10�5 3.1 0.20 70
E3, BMCC 741 11.4 1.8 � 10�3 1.5 0.10
E4, Avicel 31 0.34 5.5 � 10�5 0.85 0.077
E4, BMCC 875 9.7 1.6 � 10�3 0.49 0.044
E5, Avicel 31 0.67 1.1 � 10�4 4.8 0.22
E5, BMCC 556 12.0 1.9 � 10�3 2.8 0.13

Trichoderma reesei
CBHI, Avicel (4°C) 48 0.74 1.2 � 10�4 0.69 0.044 439
CBHI, Avicel (25°C) 57 1.1 1.8 � 10�4 5.4 0.28 637
CBHI, Avicel (25°C) 15 0.29 4.7 � 10�5 682
CBHI, Avicel (50°C) 25 0.48 7.8 � 10�5 1.7 0.09 70
CBHI/BMCC (50°C) 239 4.6 7.5 � 10�4 5.4 0.28 70
CBHII, Avicel (4°C) 28 0.52 8.4 � 10�5 1.0 0.053 439
CBHII, Avicel (25°C) 11.3 0.24 3.9 � 10�5 682

Trichoderma viride (30°C)
ExoI 6.6 0.11 1.8 � 10�5 5.0 0.3 44
ExoIII 63 1.0 1.6 � 10�4 6.9 0.43
EndoI, Avicel 130 2.5 4.0 � 10�4 0.88 0.04
EndoIII, Avicel 26 0.45 7.3 � 10�5 12 0.68
EndoV, Avicel 110 1.8 2.9 � 10�4 0.89 0.05
EndoVI, Avicel 4.1 0.08 1.3 � 10�5 3.4 0.18

Multicomponent mixtures and complexes
Trichoderma reesei

Avicel (50°C) 92 1.92 3.1 � 10�4 1.04 0.05 641
Avicel (40°C) 56 1.21 2.0 � 10�4 3.21 0.015 508
Cellulose in pretreated woodc (40°C) 81 1.68 2.7 � 10�4 1.82 0.087 506

C. thermocellum
Avicel (60°C)d 17.5 0.0083 1.4 � 10�5 246 517 50
Pretreated wood(60°C)d,e 317 0.15 2.5 � 10�5 344 722

a Values in bold are as reported; others are calculated.
b Micromole of cellulase/micromole of �-glucosidic bond calculated using 6,173 �mol of �-glucosidic bonds/g of cellulose.
c Dilute-acid-pretreated wood prepared at 220°C; an average molecular weight of 48,000 is assumed as in reference 641.
d Calculated quantities based on a specific activity of 2.4 �mol/mg/min and a molecular mass of 2.1 � 106 Da.
e Dilute-acid-pretreated wood prepared at 220°C.

VOL. 66, 2002 MICROBIAL CELLULOSE UTILIZATION 531

 on S
eptem

ber 21, 2019 by guest
http://m

m
br.asm

.org/
D

ow
nloaded from

 

http://mmbr.asm.org/


Avicel. The binding affinity (liters per gram of cellulase) for
both Avicel and pretreated hardwood is the highest in Table 5
by over 100-fold for the C. thermocellum system, the only
cellulase of the complexed type listed.

Writing in 1988 in reference to adsorption of T. reesei cel-
lulase to Avicel, Steiner et al. (641) made the observation that
roughly 1 of 3,000 �-glucosidic bonds has the capacity to form
an enzyme-substrate complex. The third column in Table 5
speaks to the generality of this important point. In particular,
the ratio of enzyme-binding capacity per �-glucosidic bond
present in the substrate is �2 � 10�3 for all enzyme-substrate
combinations listed and �3 � 10�4 for enzymes most impor-
tant in degrading crystalline cellulose (cellobiohydrolases and
cellulosome-type complexes) adsorbed to Avicel or pretreated
wood. These low values are probably due to limited accessibil-
ity associated with features of both the substrate and the en-
zyme. Substrate-associated inaccessbility involves �-glucosidic
bonds that are inaccessible because they are covered by cellu-
lose, hemicellulose, and/or lignin or because they are present
in pores that are sufficiently small to prevent the passage of a
cellulase molecule (223, 388, 464, 736). Enzyme-associated in-
accessibility arises because the dimensions of cellulases and
their binding domains greatly exceed the dimensions of the
repeating cellobiose lattice unit on the cellulose surface (261),
and so formation of an enzyme-substrate complex prevents
additional complexes from being formed with �-glucosidic
bonds covered by the bound cellulase. For example, Gilkes et
al. (212) estimate that the number of cellobiose residues oc-
cupied by Cellulomonas fimi endoglucanases (CenA and
CenX) in binding to BMCC is about 30. In addition to reduc-
tion of the binding capacity by a factor of �1/30 due to en-
zyme-associated inaccessibility, a further reduction in binding
capacity by about 1/60 is necessary to result in the values listed
in Table 5 for the overall ratio of cellulase-binding capacity as
a fraction of �-glucosidic bonds for the C. fimi system [that is,
(1/30) � (1/60) � 5.5 � 10�4]. It seems reasonable to assume
that this further reduction is attributable to substrate-associ-
ated inaccessibility.

Whereas the ratio of enzyme-binding capacity to substrate
reactive sites is �0.001 for most described cellulase-cellulose
systems, this ratio is unity for most enzyme-catalyzed reactions
involving soluble substrates. Because of this difference, it is
unusual for substrate to be in excess during enzymatic hydrol-
ysis of cellulose, although this is commonly the case for soluble
substrates. Saturation of cellulosic substrates with cellulase is
commonly observed in studies of cellulase adsorption (50, 71,
74, 437, 438, 439, 506, 681). Moreover, substrate is typically not
in excess relative to cellulose-hydrolyzing activity (including
cell-associated activity) in natural environments featuring mi-
crobial cellulose degradation (see “Uptake and phosphoryla-
tion of cellulose hydrolysis products” above). At cellulase load-
ings typical of engineered processes, it is commonly observed
that free cellulase activity is present throughout the course of
hydrolysis (24, 306, 506, 694, 773), which is indicative of acces-
sible substrate sites not being in excess. As developed below
and summarized in “Contrast to soluble substrates,” the rela-
tive rarity of substrate-excess conditions underlies several dis-
tinctive features of enzymatically mediated hydrolysis of cellu-
lose compared to enzymatically mediated reactions involving
soluble substrates.

Although usually not included in derivations for enzyme
kinetics involving soluble substrates, it is important for cellu-
losic substrates to include a material balance on accessible
cellulose binding sites:

��ST� � �C� � �CE� (4)

where � is the binding capacity of the substrate, corresponding
to the density of accessible binding sites on cellulose to which
enzyme could potentially bind (micromoles per gram), and [ST]
is the concentration of substrate (grams per liter). The obser-
vation that substrate is usually not in excess during enzymatic
hydrolysis of cellulose, discussed in the preceding paragraph,
corresponds to the statement that [C] is in general not much
higher than [CE]. Equation 4 may be substituted into equation
2 and solved for [CE] to give the Langmuir equation

�CE� �
��ST��E�

Kd � �E�
(5)

A Langmuir equation of the general form of equation 5 is the
most commonly used relationship to describe cellulase adsorp-
tion in the literature to date. It has been used to describe
cellulase adsorption in studies involving individual components
(44, 128, 332, 761), multicomponent noncomplexed systems
(375, 506, 508, 716), and complexed systems (50) and for de-
scribing adsorption to lignocellulosic materials (50, 375, 506,
716), lignin (50, 506), and purified cellulose (44, 128, 332, 375,
508, 761).

Substitution of both enzyme and substrate material balances
(equations 1 and 4) into the equilibrium constant (equation 2)
gives a quadratic equation in [CE], as noted by several authors
(71, 234, 641, 716):

�CE�2 � �CE����ST� � �ET� � Kd� � ��ST��ET� � 0 (6)

Equation 6 has two roots, with the physically meaningful
root being the one that satisfies the condition that 0 � [CE] �
[ET] and �[ST]. The values of [CE] given by the solution of
equation exhibit the following important features. (i) Values
for [CE] approach a constant value when either [ST] is
increased and [ET] is held constant or [ET] is increased at
constant [ST], representing saturation with either substrate or
enzyme. Such dual saturation has been conclusively demon-
strated in the literature for both noncomplexed (375, 641) and
complexed (49) cellulases. (ii) The value of [ST] required to
achieve an arbitrary extent of saturation in the concentration
of [CE] (e.g., half the maximum concentration) is a function of
[ET], with higher [ST] required at higher [ET]. This behavior is
consistent with the adsorption study by Bernardez et al. (50) as
well as the kinetic studies by Wald et al. (716), Lynd and
Grethlein (406), and Bernardez et al. (49).

These two features differ sharply from the Michaelis-Men-
ten model, which features saturation with substrate but not
enzyme and a km that is independent of enzyme concentration.
Indeed, it can readily be shown that in the limiting case where
[ST] �� [ET], equation 6 reduces to the result implicit in the
Michaelis-Menten equation:

�CE� �
��ST��ET�

Kd � ��ST�
(7)
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However, the condition of excess substrate is uncommon for
cellulose hydrolysis in most natural and engineered systems to
which quantitative models might be applied, as discussed
above. Thus, the Michaelis-Menten equation is for most pur-
poses not useful for describing, understanding, or modeling
cellulase enzyme systems acting on crystalline cellulose.

In cases where multiple cellulose-adsorbing components are
present, description of adsorption behavior involves the simul-
taneous solution of several equations representing isotherms
for the individual components (e.g., of the form of equation 6).
Competitive adsorption among cellulase components has been
described (366, 437, 578), and data have been interpreted in
terms of some sites being common to different cellulase com-
ponents while other sites are accessible only to a particular
component (366, 578, 772). In some studies (332, 681), a pos-
itive interactive effect has been observed whereby more en-
zyme is adsorbed in the presence of multicomponent mixtures
than when the components are present separately. Although
the biochemical complexity of complexed cellulases is consid-
erable, Bernardez et al. (49) have suggested that description
and understanding of adsorption may be simplified relative to
that in noncomplexed systems because of the dominance of
adsorption via a single scaffoldin-like protein.

Cellulase enzyme components adsorb onto lignin as well as
cellulose. Lignin acts as a competitive adsorbent for cellulase,
with the result that rates of enzymatic hydrolysis are dimin-
ished by the presence of lignin even in the absence of any steric
effect. Chernoglazov et al. (105) found that binding of cellulase
to lignin can decrease the rate of hydrolysis by severalfold and
can stop hydrolysis altogether before cellulose is exhausted.
Sutcliffe and Saddler (657) found that �-glucosidase is ad-
sorbed to lignin particularly strongly. Adsorption of unfrac-
tionated cellulase preparations from both T. reesei (506) and C.
thermocellum (49) to dilute-acid-pretreated hardwood can be
described by the Langmuir equation. For both of these sys-
tems, the fraction of cellulase adsorbed to cellulose rather than
lignin approaches unity at low cellulase loadings but declines at
higher cellulase loadings.

Notwithstanding the widespread use of the Langmuir equa-
tion and the fact that it is capable of describing some important
general features of cellulase adsorption, the assumptions im-
plicit in this equation are at best idealizations. In particular,
binding sites on cellulosic substrates are thought to be nonuni-
form, and interactions among adsorbing molecules are thought
to be common (437; also see below). To overcome these and
other limitations, modifications of the Langmuir equation have
been proposed, such as inclusion of two distinct types of bind-
ing sites (439, 637, 761) or a combined Langmuir-Freundlich
model capable of describing negative or positive binding co-
operativity (437, 439). Several studies have reported the for-
mation of both loosely associated and tightly associated cellu-
lase-cellulose complexes (346, 681). Suvajittanont et al. (658)
have hypothesized that structural changes in cellulase enzymes
occur upon cellulase adsorption.

The matter of adsorption reversibility, implicit in the Lang-
muir equation as well as in most dynamic representations of
adsorption (e.g., equation 3), is far from clear. Release of
bound cellulase is difficult to observe experimentally because
of the high affinity of many cellulases for cellulose. Although
careful studies with particular cellulases have clearly demon-

strated fully reversible cellulase binding (72, 391), irreversible
or less than fully reversible binding has been alluded to in
recent (437, 658) as well as older (44, 489) studies.

Whereas most studies of cellulase adsorption have consid-
ered substrates that have not undergone appreciable reaction,
the matter of adsorption behavior as the hydrolysis reaction
proceeds has received some attention in the case of T. reesei
cellulase preparations. Rapid initial adsorption followed by a
steady return of cellulase to solution has been observed for
both microcrystalline cellulose (461, 668) and pretreated ligno-
cellulose (498, 506). An increase in the amount of adsorbed T.
reesei cellulase preparation over the course of Avicel hydrolysis
has also been reported (507). Ooshima et al. (506) found it
justifiable to assume that the adsorption parameters for lignin
present in mixed hardwood pretreated at 220°C did not change
over the course of hydrolysis.

Quantitative description of the adsorption of microbial cells
to cellulose-containing substrates involves expressing the con-
centration of cellulose-enzyme-microbe complexes, [CEM], as
a function of variables relevant to microbial adsorption. This
concentration could conceivably be defined in units reflecting
the amount of substrate, enzyme, or microbial biomass in-
volved in the complex. We suggest that is informative to define
[CEM] in terms of enzyme units in order to facilitate compar-
ison between the effectiveness of cellulase in microbial (involv-
ing CEM complexes) and cell-free (involving cellulase-enzyme
complexes) contexts.

In contrast to the situation for cellulase adsorption, few
quantitative data have been reported relative to the formation
of CEM complexes. Cell adhesion has been associated with
factors other than cellulase components expressed on the cell
surface, including glycocalyx formation (see “Adhesion and
formation of cellulose-enzyme-microbe complexes” above)
and, in some species, the metabolic state of the cell (568).
Thus, it does not appear promising to try to infer cell adhesion
properties based solely on the adsorption properties of cellu-
lase. The surface area accessible to cells probably excludes
pores internal to substrate particles (733), although sites on
such internal surfaces could presumably be accessed by cellu-
lases released by an adherent cell. Saturation of barley straw
with ruminal bacteria has been observed in the range of 23 or
33 mg of dry cells/g of straw, depending on the particular
species considered (54). Batch growth curves of the rumen
microorganisms R. flavefaciens and F. succinogenes (568), as
well as C. cellulolyticum (207), exhibit a constant or increasing
fraction of bound cells over the period during which growth
and cellulose consumption occur. Based on this observation,
description of microbial adsorption to cellulose in terms of a
single affinity or desorption constant analogous to Kd appears
to be unsatisfactory. This observation is also inconsistent with
the hypothesis that the free cell concentration is zero until all
available substrate sites are filled with excess cells accumulat-
ing in the medium thereafter.

Rates of Enzymatic Hydrolysis

Most models for the rate of enzymatic catalysis are based on
the mathematical product of the concentration of the enzyme
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substrate complex and a proportionality factor relating this
concentration to the reaction rate:

rC � k�CE� (8)

where rC is the cellulose hydrolysis rate (substrate units/[vol-
ume � time]) and k is the rate constant, a proportionality
factor between [CE] and rC (units as needed for dimensional
consistency).

The previous section was concerned with how the concen-
tration of the cellulose-cellulase complex(es) varies with re-
spect to the relevant variables. This section is concerned pri-
marily with the proportionality factor, k, which is a function of
temperature and, in some models for cellulose hydrolysis, is
also a function of additional state variables such as substrate
conversion or enzyme age.

If there are multiple distinct enzyme-substrate complexes
(e.g., in the case of different cellulase components), then one
rate equation of the form of equation 8 must be written for
each complex. In some models, multiple types of substrate sites
are postulated; e.g., chain ends are differentiated from sites

interior to the chain, which necessitates that one rate equation
be written for each substrate type.

Models for the enzymatic hydrolysis of cellulose may also con-
sider hydrolysis of one or more soluble oligosaccharides. The
general form of the reaction rate equation for oligosaccharides,
including cellobiose, is as follows: overall rate of reaction of Gj �
rate Gj formed from cellulose hydrolysis � rate Gj formed from
reaction of oligosaccharides of length �j � rate Gj reacts to form
oligosaccharides with chain length 	j, or

rGj � fC¡GjrC � �
i

rGj,i
(9)

where Gj is a soluble glucooligosaccharide of chain length j, rGj

is the overall rate of formation of Gj (substrate units/volume/
time]), fC3Gj

is the fraction of cellulose hydrolyzed directly to
Gj, and rGj,i

is the rate of formation of intermediate Gj by the
ith reaction (� if produced, � if consumed). If there are
multiple soluble intermediates, one equation of the form of
equation 9 must be written for each intermediate.

When the cellulase-cellulose complex is expressed in units of

TABLE 6. Specific hydrolysis rates for cellulosic substrates of high crystallinity in cell-free systems

Organism Cellulase preparation Substrate and assay Sp act
(�mol/min/mg) Reference

Isolated component
Clostridium cellulolyticum CelA, expressed in E. coli and

chromatographically purified
Avicel; 37°C, RS 0.11 187

CelC, same Avicel; 37°C 0.017 186
CelE, same Avicel; 37°C 0.06 206
CelF, same Avicel; 45°C 0.17 564

Clostridium thermocellum Ion exchange-purified celA expressed in
E. coli

Avicel; 60°C, RSa, 1 h 0.083 607

Avicel (summarizes data for 8
components from various studies)

0.0052–0.083 5

Neocallimastix patriciarum Immunoaffinity-purified CELA expressed
in E. coli

Avicel; 40°C, RS, 30–60 min 9.7 146

Crude recombinant CELA Avicel; 40°C, RS, 30–60 min 1.7 146
Crude recombinant CELD Avicel; 39°C 0.18 767

Ruminococcus flavefaciens Chromatographically purified Avicel; 39°C, RS 0.049 249
Trichoderma reesei Purified CBHI and CBHII Avicel; 50°C, RS, 3 h 0.014–0.027 682

Purified CBHI and CBHII Avicel; 40°C, RS 0.26–0.48 174
Chromatographically purified, 5

components tested
Avicel; 30°C, RS, 20 h 0.002–0.019 333

Multicomponent mixtures and
complexes

Clostridum cellulolyticum Partially purified cellulosome Avicel 0.2 199
Clostridium papyrosolvens Size exclusion chromatography Avicel 0.037 539
Clostridium strain A11 Affinity chromatography Avicel; 34°C, RS (7) 0.068 45
Clostridium thermocellum Crude protein Avicel, 60°C, 21 h 0.0066 316

Size exclusion, affinity chromatography
(2.1%)

Avicel 0.1 350

None (crude extracellular protein) Avicel 0.013 350
Affinity digestion Avicel; 60°C, RS 13.2 465
Affinity chromatography Avicel; 60°C, RS 6.0 465
None (crude extracellular protein) Avicel, 60°C, RS 2.9 465
Affinity digestion Avicel; 60°C, RS 1 h 2.4 —b

Neocallimastix patriciarum Crude protein Avicel; 40°C, RS 0.27 160
Piromyces strain E2 Crude extracellular protein Avicel; 40°C, RS 0.26 160
Trichoderma reesei Crude protein Avicel; 37°C, 21 h 0.000241 316

None (Celluclast, as received) Avicel; 50°C, “initial rate” 0.83 490
None (crude broth) Filter paper; 50°C, RS, 1 h 0.6–0.8 177
None (Celluclast, as received) Petreated birch; 45°C, RS, 24 h 1.0 773
Chromatofocusing, reconstituted mixtures Pretreated birch; 45°C, RS, 24 h 0.34–1.16 773

a RS, reducing sugars.
b Y. Zhang and L. R. Lynd, submitted.
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enzyme concentration, the parameter k represents the specific
activity (rate/unit of enzyme) of the cellulase system. Table 6
presents data for specific activities for both multicomponent
mixtures or complexes and components thereof with respect to
Avicel, one of the most commonly used model substrates ex-
hibiting a high degree of crystallinity; data for filter paper and
pretreated birch are also included for the T. reesei system in
order to facilitate comparison. It is important to note that
specific activities measured during the initial stages of hydrol-
ysis on a model substrate such as Avicel give an imperfect
indication of the effectiveness of an enzyme preparation with
respect to extended hydrolysis times and/or other substrates
(3). The highest specific activities reported for multicompo-
nent mixtures or complexes are higher than the highest re-
ported specific activities for isolated components by 1.7-fold in
the case of T. reesei (compare reference 174 and 773) and
159-fold in the case of C. thermocellum (compare references 5
and 465). The larger benefit of multiple protein components
for the C. thermocellum system compared with T. reesei may be
because most of the catalytically active components of the C.
thermocellum cellulosome lack a cellulose-binding domain and
are thus dependent on the noncatalytic dockerin protein for
cellulose binding. The specific activity for CELA from Neocal-
limastix patriciarum is higher than that reported for the N.
patriciarum complex and is by far the highest reported for an
isolated component.

While some useful comparative observations can perhaps be
made based on a compilation such as that presented in Table
6, a more obvious conclusions is that the results are highly
variable even for the same organism and apparently similar
cellulase preparations. Presumably this variability arises due to
differences in assay conditions used by different investigators.
In general, meaningful comparisons among different cellulase
systems require side-by-side experiments in the same lab,
which unfortunately are not common in the literature.

The idea that the specific activity of complexed cellulase
systems is higher than that of noncomplexed cellulases, and T.
reesei cellulases in particular, has often been mentioned in the
literature (see, e.g., references 39, 160, 606, 621, 636, and 683).
Most statements to this effect refer to the work of Johnson et
al. (316) and/or Wood et al. (759), involving the cellulase
systems of C. thermocellum and Neocallimastix frontalis, respec-
tively. Johnson et al. reported a comparison of cellulase activity
present in culture broth from C. thermocellum (0.2 mg of pro-
tein/ml) with that in reconstituted broth from T. reesei (9.5 mg
of protein/ml). For both cotton and Avicel, rates of hydrolysis
by C. thermocellum broth at 60°C were somewhat higher than
rates of hydrolysis by T. reesei reconstituted broth at 50°C.
These data have been interpreted to imply a 50-fold difference
in specific activity (316, 683). The experimental design used in
these experiments does not appear to eliminate the possibility
that the reconstituted T. reesei broth contained cellulase at
concentrations sufficiently high to saturate the substrate, which
would result in a lower calculated specific activity. Further
insight into this matter is provided by an unpublished experi-
ment from Eric Johnson’s thesis (reference 314, p. 63–65),
which compared the hydrolysis of Avicel and phosphoric acid-
swollen Avicel by broth dilutions from both organisms having
the same amount of crude protein. In this experiment, the rate
of Avicel hydrolysis was higher for C. thermocellum broth by a

substantial margin (we estimate about sixfold based on initial
rates). When combined with Johnson’s estimates for the frac-
tion of crude broth protein consisting of cellulase—30 to 35%
for C. thermocellum and �85% for T. reesei—these data appear
to imply that the specific activity of the C. thermocellum cellu-
lase complex is about 15-fold higher than that of the T. reesei
system. Remarkably, the rate of hydrolysis by the C. thermo-
cellum system increased only slightly (we estimate about two-
fold based on initial rates) for hydrolysis of phosphoric-acid
swollen cellulose compared to Avicel, whereas the hydrolysis
by the T. reesei system was higher for phosphoric acid-swollen
cellulose than for Avicel by over 50-fold.

Wood et al. (759) showed that an extracellular cellulase
preparation from a coculture of the anaerobic fungus N. fron-
talis and the methanogenic Methanobrevibacter smithii exhib-
ited roughly threefold-higher rates of cotton hydrolysis at 37°C
than did a preparation from T. reesei at 50°C. However, an
extracellular cellulase preparation from a pure culture of N.
frontalis exhibited lower hydrolysis rates than did the T. reesei
preparation. These comparative results were based on a con-
sistent amount of endoglucanase activity (and not cellulase
protein) for both systems. A subsequent study by Wilson and
Wood (745) compared hydrolysis rates of cellulase prepara-
tions from C. thermocellum, N. frontalis, and T. reesei acting on
cotton over a 10-fold range of protein concentrations. For all
but the lowest protein concentrations tested, the specific activ-
ity of both complexed cellulases was higher than that of the
noncomplexed T. reesei cellulase by roughly an order of mag-
nitude. Solubilization was greater for the preparation from N.
frontalis compared to the preparation from C. thermocellum for
every protein concentration tested, although differences be-
tween these systems were twofold or less.

These results provide strong support for the notion that the
specific activity of crystalline cellulose hydrolysis on a per-unit-
cellulase-protein basis is higher for at least some complexed
systems compared to the T. reesei system. The number of stud-
ies that speak directly to this point is, however, limited, and
thus extensive data are not available with respect to variables
such as sources of enzymes, substrates, enzyme preparation
method, enzyme/substrate ratios, and extent of reaction. In
light of this, the magnitude of the specific activity difference
between complexed and noncomplexed system is uncertain, in
our view, and would benefit from further study.

It is relevant to consider the hydrolytic activity of cellulase in
comparison to other enzymes. The specific activity of T. reesei
cellulase as measured by standard assays with crystalline cel-
lulose as the substrate is about 100-fold lower than that of
amylase (422). Klyosov (346) calculates kcat values, corre-
sponding to k values in equation 8 when [CE] is expressed in
moles, of 0.5 to 0.6 s�1 for T. reesei cellulase, 58 s�1, for
amylase, and up to 100 to 1,000 s�1 for other hydrolases. The
effectiveness of cellulase is further reduced because actual
rates in extended hydrolysis are much lower than the initial
rates measured in standard assays (see below). Because of
these factors, the amount of cellulase required to achieve rea-
sonable rates for practical applications can be substantial, e.g.,
1.5 to 3% by mass of the initial amount of cellulose for the T.
reesei cellulase system (422).

Notwithstanding the effect of lignin in terms of both steri-
cally impeding access of enzymes to cellulose (see “Rate-lim-
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iting factors in nature” above) and acting as a competitive
adsorbant (see the previous section), it is not correct to assume
that higher rates will necessarily be observed on purified cel-
lulosic substrates than on pretreated lignocellulose. For exam-
ple, Bernardez et al. (49) compared initial hydrolysis rates for
Avicel and dilute-acid-pretreated mixed hardwood using cel-
lulase contained in cell-free broth from C. thermocellum. Pre-
treated wood was hydrolyzed up to 10-fold faster than Avicel at
high enzyme loadings, consistent with the differences in en-
zyme adsorption capacity for these two substrates (Table 5).

The rate of enzyme-mediated hydrolysis of cellulose is in-
hibited by products of hydrolysis and is also potentially inhib-
ited by fermentation products if hydrolysis and fermentation
are carried out at the same time (see “Process configuration”
below). As reviewed elsewhere (470, 533), cellulose hydrolysis
is inhibited by cellobiose and to a much lesser extent by glucose
for cellulase from both Trichoderma spp. and C. thermocellum.
�-Glucosidase in T. reesei is highly sensitive to inhibition by
glucose. Whether inhibition by soluble hydrolysis products is
important for microbial cellulose utilization depends on
whether such products accumulate in the microenvironments
in which hydrolysis occurs, as discussed further below (see
“Kinetics of microbial cellulose utilization”). Ethanol is less
inhibitory to cellulose hydrolysis than is cellobiose by an order
of magnitude in both Trichoderma spp. (533) and C. thermo-
cellum (49).

Although initial rates are often used for biochemical char-
acterization, it is of interest from both fundamental and ap-
plied perspectives to understand and describe the enzymatic
hydrolysis of cellulose over the entire course of reaction—that
is, over conversion values from 0 to 1, where conversion, �, is
defined by

� � �S0 � S�/S0 (10)

where S0 is the substrate concentration at time t � 0 (batch) or
entering (continuous) and S is the substrate concentration at
time t � 0 (batch) or exiting (continuous). It may be noted that
high values of � are characteristic of most cellulose particles in
both natural and engineered environments. A near-universal
feature of cellulose hydrolysis observed in many studies over
several decades is that the rate declines sharply as the reaction
proceeds (corresponding to increasing values of �) in a batch
hydrolysis. Measurements of rate in conjunction with adsorbed
enzyme (152, 498, 507) confirm that the phenomenon of de-
clining rate with increasing conversion is observed on a specific
(rate per adsorbed enzyme) as well as absolute basis.

Enzyme inactivation due to thermal effects (91, 117, 219),
formation of an inactive enzyme-substrate (lignin) complex
(234, 506, 657), and inhibition by hydrolysis products (91, 233,
377) have been implicated as important factors underlying the
decreasing-rate phenomenon. However, it is significant to ob-
serve that this phenomenon has been documented in studies in
which neither inactivation nor inhibition appears operative
(693, 776).

Several studies have attributed declining rates of hydrolysis
to a corresponding change in substrate reactivity. One subset
of these studies postulates two types of cellulose that differ in
their susceptibility to enzymatic attack (219, 289, 488, 536, 597,
716). While this “two-substrate” hypothesis cannot be rejected

based on the literature to date, it also appears that the differ-
ence between the more reactive and less reactive substrate
fractions is attributable primarily to factors other than crystal-
linity. If this difference were due to crystallinity, then cellulose
crystallinity should increase over the course of reaction. How-
ever, relatively constant crystallinity over the course of enzy-
matic hydrolysis has been observed in studies involving a vari-
ety of cellulase systems (149, 178, 201, 374, 381, 547), although
such crystallinity measurements may be due to artifacts (730).

A second subset of studies feature a continuous decline in
substrate reactivity rather than two distinct substrate types.
Working with pretreated poplar and the T. reesei system, Nutor
and Converse (498) found that the rate of cellulose hydrolysis
per adsorbed cellulase decreased monotonically by 1 to 2 or-
ders of magnitude over the course of reaction. South et al.
(633) used a conversion-dependent rate constant to represent
the declining specific activity of the cellulase-cellulose complex
over the course of simultaneous saccharification and fermen-
tation of pretreated hardwood, using a commercial T. reesei
cellulase preparation:

k��� � k��1 � ��n � c } (11)

The best-fit value of the exponent n was found to be 5.3,
providing a further indication of the strong functional depen-
dence of rate on conversion. South et al. tested but rejected a
constant-reactivity model as an alternative to equation 11.
Velkovska et al. (713) used equation 11 to model the rate of
cellulose hydrolysis during growth of T. reesei on Solka Floc. A
mean value for n of 6.1 gave the best fit to the data. The strong
declines in specific hydrolysis rate observed by both South et al.
(633) and Velkovska et al. (713) were obtained in the presence
of a sugar-consuming micoorganism and at temperatures (37
and 28°C, respectively) unlikely to result in thermal denatur-
ation of cellulase. Working with purified cellulase components
from T. fusca, Zhang et al. (776) concluded that substrate
heterogeneity causes the nonlinear kinetics exhibited during
hydrolysis of filter paper whereas product inhibition and en-
zyme inactivation were rejected as explanations for this phe-
nomenon. Product inhibition was ruled out because cellulase
activity was not stimulated by �-glucosidase. Several lines of
evidence supported a decline of substrate reactivity rather than
enzyme deactivation, and a nearly threefold increase in the
activation energy was observed for cellulose with conversion �
0.24 compared to conversion � 0.

Several groups have undertaken “restart” experiments
wherein a partial hydrolysis is conducted, cellulase is removed,
and the hydrolysis rate is measured on addition of new enzyme.
As summarized in Table 7, results from restart experiments
have been used as a basis to both confirm (488, 776) and reject
(152, 233, 507) declining substrate reactivity as a primary factor
responsible for the declining rate phenomenon. Gusakov et al.
(233) explain declining rates in terms of deactivation of sub-
strate-bound cellulase and product inhibition. The explanation
of Ooshima et al. (507) is that synergistic interaction between
cellulase components becomes less effective with increasing
conversion. Väljamäe et al. (693) attribute the rate decline to
steric hindrance due to nonproductive cellulose binding in
combination with surface erosion. It may be noted that essen-
tially all detailed investigations of the declining-rate phenom-
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enon have been based on noncomplexed cellulases and that
features of such systems may or may not be generalizable to
other systems. Constant hydrolysis rates were observed under
some conditions for the C. thermocellum cellulase system at
conversion values up to 0.7 for pretreated wood and 0.4 for
Avicel (406), although rates that decline with time in the usual
fashion were observed under other conditions.

For quantitative modeling of enzymatic hydrolysis of cellu-
lose during simultaneous saccharification and fermentation in
continuous well-mixed reactors, South et al. (633) found it
necessary to integrate reaction rates over the time individual
particles, or segments of the particle population, spend in the
reactor according to the following equation:

���� � �
0

�

E�t,�� � ��t�dt (12)

where � is the mean residence time, �(�) is the substrate con-
version as a function of �, E(t,�) is the particle residence time

distribution for a CSTR � e(t/�)/�, and ��t� � �
0

t r�S�t��
Sin

dt.

When parameters to equation 11 fit to batch hydrolysis data
were used to predict steady-state continuous hydrolysis data
using equation 12, essentially no increase in model error was
observed. By contrast, if substrate reactivity was evaluated at
the exit conversion, as is routinely done for analysis of soluble
substrates in well-mixed continuous reactors, the model error
was more than fivefold greater than that obtained using equa-
tion 12. These results were interpreted to mean that the reac-
tivity of pretreated hardwood is a function of conversion as
well as concentration under these conditions.

Bioenergetics of Microbial Cellulose Utilization

Distinctive features of microbial cellulose utilization com-
pared to microbial utilization of monomeric sugars that are
potentially important in the context of bioenergetics include (i)
the metabolic burden represented by cellulase synthesis, (ii)
potential net ATP gain as a result of phosphorolytic rather
than hydrolytic cleavage of cellodextrins, (iii) bioenergetic de-
mands for transport of cellulose hydrolysis products, and (iv)
the metabolic burden represented by glycocalyx synthesis. The
quantitative importance of these features are addressed in the
following paragraphs; qualitative aspects are addressed above
(see “Physiology of cellulolytic microorganisms”).

Several lines of evidence suggest that ATP allocation to
cellulase synthesis is often a significant fraction of the ATP
allocated to cell synthesis for both aerobic and anaerobic cel-
lulolytic microorganisms. In particular, because specific activity
is much lower for cellulase than for most other catabolic en-
zymes (see the previous section), the relative allocation of
carbon and ATP to cellulase synthesis can be expected to be
correspondingly larger for growth on cellulose as opposed to
allocation of cellular resources to catabolic enzymes required
for growth on soluble substrates. In the case of aerobic cellu-
lase utilization, extensive data compiled by Esterbauer et al.
(177) indicate that cellulase yields of 200 filter paper units
(FPU) per g of cellulose and specific activities of 600 FPU/g of
protein are typical of studies of extracellular cellulase produc-
tion by T. reesei. These data imply a YE/S value of 0.33. Since it
is unlikely that cell yield values substantially exceed these val-
ues, and since synthesis of 1 g of protein requires more ATP
than synthesis of 1 g of cells (577), it may be inferred that the
ATP allocated to cellulase synthesis is of a magnitude similar
to that allocated to cell synthesis in T. reesei. For anaerobic
growth on cellulose, modeling studies indicate that the rate of
cellulose hydrolysis is maximized when about one-third of the
discretionary ATP expenditure (excluding maintenance) is al-
located to cellulase synthesis (710). This optimal ATP alloca-
tion is similar over a large range of values of assumed cellulase
specific activity. Only limited data relevant to comparative
evaluation of cell and cellulase yields are available, in part
because of the difficulty of independently quantifying cell and
cellulase production in many systems (see “Quantification of
cells and enzymes is the presence of solid substrates” above).

Additional ATP beyond that obtained from catabolism of
monosaccharides is potentially available to cellulolytic micro-
organisms as a result of the action of cellobiose phosphorylase
(CbP) and cellodextrin phosphorylase (CdP) (discussed above
[see “Uptake and phosphorylation of cellulolose hydrolysis
products”]). The ATP gain accompanying phosphorolytic
cleavage of a cellodextrin of length n is equal to n/(n � 1) and
thus goes from zero for n � 1 to an asymptotic value of 1 as the
cellodextrin length increases (Fig. 4). Evidence that the poten-
tial bioenergetic benefit of CdP and CbP is in fact realized to
a significant extent comes from estimations of the cell yield
based on measurement of optical density or protein synthesis.
Observed cell yields are �30% higher on cellobiose than on
glucose for C. thermocellum (650) and R. albus (680). In addi-
tion, cell yield increases of at least 25% have been observed to
accompany growth on cellodextrins with chain lengths of �2

TABLE 7. Summary of data from “restart” experiments

Enzyme source (purification) Substratea

Factors believed operative
in uninterrupted hydrolyses

Declining rate
observed upon

restart?
Reference

Inactivation Inhibition

Trichoderma longibrachiatum (unpurified) CT cotton stalks Yes Yes No 233
Trichoderma viride (unpurified) Microcrystalline cellulose No Yesb No 507
Celluclast (unpurified) Microcrystalline cellulose No Yesb Yes 488
Trichoderma reesei (unpurified) Dilute-acid-pretreated MH ? ? Slight 152
Thermobifida fusca (purified components) Filter paper and BMCC No No Yes 776
Trichoderma reesei (purified components) BMCC No No Yes 693

a BMCC, bacterial microcrystalline cellulose; CT, chemically treated; MH, mixed hardwood.
b Product inhibition, although observed, was not deemed responsible for the declining rate observed.
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compared to cellobiose in the case of C. thermocellum (650)
and R. albus (394). The true cell yield of C. cellulolyticum
grown in continuous culture is 40% higher on Avicel than on
cellobiose (156). In addition to these data for anaerobes, it may
be noted that cellodextrin phophorylase activity has been de-
tected in the aerobes Cellvibrio gilvus (293) and Cellulomonas
fimi (600) and that increasing cell yield with increasing cello-
dextrin chain length has been reported for C. gilvus (612).

The bioenergetic cost of substrate transport is thought to be
constant per transport event and thus independent of oligo-
saccharide chain length in E. coli (473). It has been proposed
that this is also the case for C. thermocellum (650) and C.
cellulolyticum (157). The ATP expenditure per hexose equiva-
lent transported is equal to �/n, where � is the number of
moles of ATP expended (directly or indirectly) per transport
event and n is the cellodextrin chain length. As a result, this
expenditure goes from � at n � 1 and to an asymptotic value
of 0 as the cellodextrin chain length increases (Fig. 4). As
discussed above (see “Uptake and phosphorylation of cellulose
hydrolysis products”), ABC transport systems are thought to
be used for cellodextrin transport by C. thermocellum and C.
cellulolyticum but not F. succinogenes. Expenditure of 1 ATP
per transport event, corresponding to � � 1, has been hypoth-
esized for cellodextrin transport in C. thermocellum (650) and
C. cellulolyticum (227); � � 2 has also been hypothesized for C.
cellulolyticum (157). An alternating two-site mechanism involv-
ing one ATP hydrolyzed per transport event has been pro-
posed based on detailed studies of both the LmrA ABC trans-
porter in Lactococcus lactis (709) and the P-glycoprotein of
humans (610). It has been hypothesized that this mechanism
may also be applicable to other ABC transport systems (610,
709).

The magnitude of the potential bioenergetic benefit associ-
ated with growth on cellodextrins as opposed to glucose cor-
responds to the ATP gain accompanying phosphorolysis minus
the difference between the ATP expenditure for monomer
transport and the ATP expenditure for cellodextrin transport.

This quantity may be visualized from Fig. 4 and may also be
calculated as follows:

Benefit of growth on cellulose oligomers compared to
glucose (moles of ATP/mole of hexose)

� ATP gain from phosphorylating hydrolases � reduced
bioenergetic cost for transport

� f�n � 1
n � � �� �

�

n� � �f � ���n � 1
n � (13)

where f is the fraction of substrate cleaved phosphorolytically
rather than hydrolytically, n is the cellodextrin chain length,
and � is the number of moles of ATP expended (directly or
indirectly) per transport event. By way of illustration, consider
the hypothetical example of growth on cellopentaose (n � 5)
relative to growth on glucose for the case where cellodextrin
cleavage is entirely phosphorolytic (f � 1) and 1 ATP is ex-
pended per transport event (� � 1). For these values, the
potential bioenergetic benefit for growth on cellopentaose rel-
ative to glucose, as calculated using equation 13, is 1.6 ATP/
mol of hexose. Yet larger benefits result if � � 2 is assumed.
While benefits of this magnitude are small compared to the
ATP available from oxidative phosphorylation, they are large
relative to the ATP available for anaerobic cellulolytic micro-
organisms with energy conservation via substrate-level phos-
phorylation. In particular, 1.6 ATP/mol of hexose corresponds
to about a 50% increase in the total catabolic ATP available to
a fermentative anaerobe (see “Metabolic engineering” below)
and is also roughly commensurate with estimates for the ATP
expended on cellulase synthesis, as discussed earlier in this
subsection.

In comparison to growth on a monosaccharide, growth on
cellulose affords opportunities for bioenergetic benefits via the
action of phosphorylases and more efficient substrate transport
but also incurs an additional bioenergetic cost for synthesis of
cellulase and perhaps glycocalyces. As discussed above, avail-
able data are not inconsistent with the hypothesis that the
magnitude of the bioenergetic benefit associated with growth
on cellulose is equal to or in excess of the bioenergetic cost.
Definitive testing of this hypothesis, however, requires further
study.

Quantitative information on the composition and yields of
glycocalyx formed by cellulolytic anaerobes is in general not
sufficient to evaluate the bioenergetic cost of glycocalyx forma-
tion. A primary question in this context is the relative impor-
tance of de novo glycocalyx synthesis compared to nonspecific
accretion. De novo synthesis as used here involves intracellular
synthesis of glycocalyx components followed by secretion of
these components into the cell’s immediate surroundings. Ac-
cretion involves incorporation of glycocalyx components con-
sisting of cellulose hydrolysis products that have not yet en-
tered the cell. This distinction is potentially important with
respect to bioenergetics because de novo-synthesized glycoca-
lyx components are expected to exert an ATP demand whereas
accreted components would not be expected to exert such a
demand.

FIG. 4. Effect of chain length (number of glucosyl units) on the
ATP expenditure required per mole of glucosyl unit transported and
on the potential ATP benefit per mole of glucosyl unit arising specif-
ically from phosphorolytic activation via intracellular cellobiose phos-
phorylase and cellodextrin phosphorylase. The calculations assume a
requirement for transport of 1 mol of ATP per mol of sugar regardless
of chain length (see the text).
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Lynd and Zhang (411) have proposed that the rates of ATP
supply and demand during fully coupled microbial growth on
cellulose may be described by an equation of the form

rC
X

f�n � 1�

n � rC
XGATP, glucose �

rC
X�

n �
�

YX/ATP
True �

�

YE/ATP
True � m

(14)

where rC
X is the moles of cellulose monomer hydrolyzed per

gram of cells per hour, GATP,glucose is the moles of ATP from
glycolysis and postpyruvate metabolism per mole of hexose,
YX/ATP

True is grams of cells per mole of ATP allocated to growth,
YE/ATP

True is grams of cellulase per mole of ATP allocated to
cellulase synthesis, � is the specific growth rate (reciprocal
hours), � is the specific cellulase synthesis rate (grams of cel-
lulase per gram of cells per hour), and m is the maintenance
ATP utilization rate (moles of ATP per gram of cells per
hour). The first term in equation 14 represents the rate of ATP
generation as a result of phosphorylytic cellodextrin cleavage,
and the second term represents the rate of generation via
glycolysis and postpyruvate metabolism. The third term, on the
right of the equal sign, represents the rate of ATP expenditure
for substrate transport. The fourth, fifth, and sixth terms rep-
resent rates of ATP expenditure for growth, cellulase synthesis,
and maintenance, respectively. The first and fifth terms are
specific to growth on cellulose, as are the magnitude and form
of the third term. An additional term could be added for
glycocalyx production if associated ATP demand were found to
be significant.

Higher maintenance coefficients have been observed for glu-
cose than for cellobiose in both C. thermocellum (650) and R.
albus (680). At low growth rates (e.g., 0.02 h�1) of the cellu-
lolytic Clostridium strain C7 on glucose, increased maintenance
energy associated with elevated levels of cAMP and ppGpp
was found to significantly reduce the rate of cell synthesis with
little effect on the rate of exoenzyme synthesis (142). In F.
succinogenes, glycogen storage and cycling appear to play a
significant role in the energy economy of the cell and to be
associated with sensitivity to cell lysis (738, 739). Glycogen
formation and exopolysaccharide formation have also been
noted in C. cellulolyticum grown on cellulose (157, 158). An
important limitation of bioenergetically oriented studies of
microbial cellulose utilization to date is that nearly all such
studies have been carried out with soluble substrates. We at-
tribute this primarily to the methodological challenges de-
scribed above (see “Quantification of cells and enzymes in the
presence of solid substrates”).

Kinetics of Microbial Cellulose Utilization

Cellulose hydrolysis limits the rate of microbial cellulose
utilization under most conditions, as may be inferred from the
observation that maximum growth rates on soluble sugars are
usually several-fold faster than on crystalline cellulose. Consis-
tent with hydrolysis being rate limiting, concentrations of sol-
uble sugars resulting from cellulose hydrolysis are usually van-
ishingly small (�0.5 mM or undetectable) in cellulose-fed
systems that approach or achieve steady state. Such systems
include chemostats involving both pure cultures (409, 516, 727)
and mixed cultures (111) as well as the rumen (114, 320, 537).

Soluble sugars are commonly observed to accumulate in batch
cultures of cellulolytic bacteria, but this is in most cases prob-
ably due to continuing activity of cellulase enzymes after
growth ceases (156).

The specific growth rate, �, may be defined as

� � rX/X (15)

where rX is the rate of cell formation (gram of cells per liter per
hour) and X is the cell concentration. Microbial utilization of
soluble substrates in batch cultures is often qualitatively described
as having an “exponential” growth phase. However, an exponen-
tial increase in cell concentration with time is reasonable to expect
only if the rate of increase of the cell concentration is propor-
tional to the cell concentration, which requires that substrate be in
excess and that substrate reactivity be constant through most of
the batch growth curve. Although both of these conditions are
met during the exponential phase of growth on a soluble sub-
strate, it is unusual for either of them to be satisfied (let alone
both of them) for growth on cellulosic substrates (see “Adsorp-
tion” and “Rates of enzymatic hydrolysis” above). Thus, there is
little basis to expect exponential growth in batch cultures of bac-
teria growing on cellulose over any significant range of conversion
values, and this has not been conclusively reported to our knowl-
edge. The growth rate may be determined using equation 15 by
estimating rx from differential batch data or, more reliably, from
continuous culture data.

At the other extreme from exponential growth with cell
concentration implicitly assumed to be limiting and substrate
in excess, substrate concentration may be assumed to be lim-
iting with cellulase and cells in excess.

In its simplest form, this latter assumption leads to first-
order expressions for the rate of substrate utilization and
growth in a batch culture such as equations 16 and 17:

dS/dt � � k�S (16)

dX/dt � YX/Sk�S (17)

where k� is an empirical constant.
There is more experimental evidence to support cellulose

hydrolysis being first-order in cellulose under at least some
conditions as compared to the idea that microbes grow expo-
nentially on cellulose.

It may be noted that these two possibilities are mutually
exclusive. A first-order dependence of the rate of cellulose
hydrolysis on cellulose concentration has been documented for
pure and naturally occurring, but not pretreated, cellulosic
substrates in batch cultures of mixed ruminal microorganisms
(733) and anaerobic digester microflora (684). Such first-order
dependence has also been observed in continuous pure cul-
tures of R. flavefaciens (735) and R. albus (517) grown on
microcrystalline cellulose and in continuous culture of T. reesei
grown on ball-milled wood (535). However, the rate constant
k� has also been observed to decline with increasing conversion
in microcrystalline cellulose-grown continuous cultures of R.
flavefaciens (617) and F. succinogenes S85 (727) and in cultures
of C. thermocellum grown on pretreated wood (407).

It is somewhat difficult to reconcile the observation of first-
order hydrolysis kinetics for microbial cellulose utilization with
known information about cellulose hydrolysis in cell-free sys-
tems (see “Rates of enzymatic hydrolysis” above). First, this
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would seem to require that the concentration of accessible
substrate sites changes in proportion to the overall substrate
concentration over the course of reaction, which has not been
established in general. Second, first-order kinetics is not con-
sistent with declining reactivity of cellulose with increasing
conversion. In light of the significant evidence supporting such
a decline in cell-free hydrolysis (see “Rates of enzymatic hy-
drolysis” above), it might be expected that this phenomenon
would also be observed for microbial cellulose utilization. This,
however, remains to be conclusively shown. Third, first-order
kinetics are mechanistically defensible only under conditions
where cellulase, or alternatively microbes with cellulase ex-
pressed on the cell surface, is entirely in excess. Conditions
where neither substrate nor enzyme are in excess—that is,
where the rate would increase if either the substrate or cellu-
lase concentration were increased—are common for cell-free
systems (see “Adsorption” above) and have also been docu-
mented for microbial cellulose utilization of pretreated sub-
strates in continuous culture (407). Most if not all experimental
data which show a first-order dependence of the cellulose
hydrolysis rate with respect to cellulose concentration come
from either nonpretreated substrates or model substrates such
as Avicel, both of which have lower capacity to adsorb cellulase
than is typical of pretreated substrates (50).

Table 8 presents values for the specific growth rate and
first-order rate constant for microbial cellulose utilization. As
with Tables 5 and 6, caution is appropriate when making com-
parative observations, since the data in Table 8 were not ob-
tained under identical conditions with respect to apparatus and
substrate. Subject to this potentially important limitation,
available data are consistent with the following observations.

(i) More reactive substrates such as ball-milled cellulose and
Solka Floc support higher rates of growth and cellulose hydrol-

ysis than do more recalcitrant substrates such as Avicel and
cotton.

(ii) The three thermophilic cellulolytic microorganisms
listed in the table, C. thermocellum, Thermomonospora sp.
strain N-35, and A. thermophilum, exhibit substantially higher
growth rates on cellulose than do any of the mesophiles listed
on comparably reactive substrates. Available data exhibit a
general trend of increasing growth rates on crystalline cellulose
as a function of temperature, as shown in Fig. 5.

(iii) Growth rates and first-order rate constants do not in

FIG. 5. Relationship between growth temperature and maximum
specific growth rate constant for aerobic (open circles) and anaerobic
(solid circles) microorganisms grown on crystalline cellulose (r2 �
0.90). Data are from references 157, 210, 407, 445, 517, 617, 659, and
727.

TABLE 8. Kinetic parameters for microbial cellulose utilization

Organism Substrate, cultivation mode
Parameter value (h�1)

Reference
Specific growth ratea First-order rate constant

A. thermophilum Microcrystalline cellulose, batch, 74°C 0.4 (max, obs) 659
Cellulomonas uda ATCC 21399 Avicel, batch, 30°C 0.027b 148
Cellulomonas flavigena JC3 Avicel, batch, 35°C 0.006b 139
C. cellulolyticumATCC 35319 MN301, batch, 34°C 0.057 (max, obs) 157
C. cellulolyticum ATCC 35319 MN301, continuous, 34°C 0.083 (max, obs) 0.05 157
C. thermocellum ATCC 27405 Avicel PH105, continuous, 60°C 0.17 (max, obs) 0.16b 407
C. thermocellum ATCC 27405 Pretreated hardwood, continuous, 60°C 0.13 (max, obs) 407
F. succinogenes S85 Sigmacell 20, continuous, 39°C 0.076 (max, obs) 0.07 727
F. succinogenes S85 Ball-milled filter paper, continuous, 39°C 0.38 (max, obs) 338
R. albus 8 Avicel, continuous 0.095 (max, obs)c 0.05 517
R. flavefaciens FD-1 Sigmacell 20, continuous, 39°C 0.10 (max, obs) 0.08 617
R. flavefaciens FD-1 Ball-milled filter paper, continuous, 39°C 0.51 (max, obs) 338
Thermonospora sp. strain N-35 Avicel, continuous, 55°C 0.23 (max, extrap) 445
T. reesei QM 9414 Cotton, continuous, 28°C 0.028 (max, obs) 210
T. reesei Rut C30 Solka Floc BW 200, 28°C 0.077 (max, obs) 250
T. reesei Rut C30 Solka Floc 200, batch, 28°C 0.125 (max, fitted) 713
T. reesei QM 9414 Ball milled cellulose, continuous, 30°C 0.17 (max, extrap) 0.1c 535
T. reesei QM9123 Glucose, continuous, 30°C 0.15 (max, extrap) 84
Undefined acidogenic mixed

culture from digester innoculum
Crystalline cellulose (20 �m),

continuous, 35°C
0.042 (max, obs) 0.019c 111

a “Max, obs” corresponds to the reported growth rate for batch cultures studies and the highest reported steady-state dilution rate for continuous-culture studies.
“Max, fitted” corresponds to the maximum growth rate observed in several runs with the value determined by parameter fitting. “Max, extrap” corresponds to the
maximum growth rate extrapolated to zero conversion.

b Rate constants calculated by Weimer (728) based on data from the references indicated.
c Constant calculated for this work based on data from the references indicated.
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general appear to be higher for aerobic cellulose utilizers
(Thermomonospora spp., Cellulomonas spp., and T. reesei) than
for anaerobic cellulose utilizers.

(iv) Although T. reesei is distinguished by being a prodigious
producer of extracellular cellulase, there are no data to suggest
that it exhibits unusually high rates of growth on cellulosic
substrates. While not entirely conclusive, available data suggest
that this organism grows rather slowly in submerged culture
(which is not representative of its growth environment in na-
ture) relative to other cellulolytic organisms on comparably
reactive substrates.

It is surprising that the first-order rate constant for crystal-
line cellulose degradation by undefined acidogenic mixed cul-
tures at mesophilic temperatures in the thorough study by Chyi
and Dague (111) is generally lower than values for pure cul-
tures of mesophiles growing on comparably reactive substrates.

The absence of an apparent difference between the specific
growth rates mediated by anaerobes and aerobes, observation
(iii) above, has implications with respect to the cell-specific
cellulose hydrolysis rate, rS

X (grams of cellulose per gram of
cells per hour), which may be expressed as

rS
X � �/YX/S (18)

Because cell yields of anaerobes growing on carbohydrates are
typically severalfold lower than those for aerobes (577), it
follows from equation 18 that if anaerobes and aerobes have
similar growth rates on cellulose—as appears to be the case—
the cell-specific cellulose hydrolysis rate is severalfold higher
for anaerobes. This may also prove to be true with respect to
the cellulase-specific hydrolysis rate mediated by CEM com-
plexes in the presence of cellulolytic microbes, although avail-
able data do not speak directly to this point.

Models of microbial cellulose utilization that are more de-
tailed than exponential growth or first-order substrate utiliza-
tion, whether conceptual or quantitative, incorporate to vari-
ous degrees our understanding embodied in models of
adsorption of cellulase and/or cells (see “Adsorption” above),
kinetics of enzymatic hydrolysis of cellulose (see “Rates of
enzymatic hydrolysis” above), and bioenergetics (see “Bioen-
ergetics of microbial cellulose utilization” above) and our un-
derstanding of relevant fundamentals (see “Fundamentals”
above). For microbial cellulose utilization in general, the over-
all rate of cellulose hydrolysis is the sum of the rates due to
hydrolysis associated with CE complexes and the rates due to
hydrolysis associated with CEM complexes. For particular sys-
tems either CE-mediated or CEM-mediated hydrolysis may
predominate. It would seem appropriate to allow for the pos-
sibility that the catalytic efficacy of cellulase in CE and CEM
complexes may not be the same (discussed below). The overall
rate of formation of an oligomer of length j is as considered
above for enzymatic hydrolysis (equation 9) with the addition
of microbial uptake. While separate substrate-enzyme and sub-
strate-enzyme-microbe complexes might be hypothesized for
oligosaccharides as well as for cellulose, this added complexity
may not be warranted in light of the observation that oligosac-
charide hydrolysis is usually not rate limiting. The overall rate
of cell formation is the sum of the rates of uptake of oligomers
of various lengths multiplied by the cell yield for that oligomer.
Similarly, the overall rate of cellulase formation is the sum of

the rates of uptake of oligomers of various lengths multiplied
by the cellulase yield for that oligomer. The relative synthesis
of cells and cellulase is determined by metabolic control mech-
anisms subject to bioenergetic constraints which are in part a
function of the relative uptakes for oligomers of different
lengths (see “Bioenergetics of microbial cellulose utilization”
above). This line of thinking can be expressed symbolically by
the following equations:

rC � � k�CE� � εk�CEM� (19)

rGj � fC¡GjrC � �
i

rGj,i � fGj¡cellsru (20)

rX � �
j

YX/Gj fGj¡cellsru (21)

rE � �
j

YE/Gj fGj¡cellsru (22)

where ε is an “enhancement factor” reflecting the ratio of the
hydrolysis rate for a given amount of enzyme in a CEM com-
plex to the hydrolysis rate of the same amount of enzyme in a
CE complex, ru is the overall rate of microbial uptake of car-
bohydrates (substrate/volume/time), and rE is the rate of cel-
lulase formation (enzyme/volume/time). Under conditions
where oligomers do not accumulate, either because they are
consumed as fast as they are formed or because the system is
at steady state, the rate of cellulose hydrolysis, rC, is equal to
the rate of carbohydrate uptake, ru. Equations 19 to 22 may be
incorporated into reactor models by using an appropriate ma-
terial balance, including for continuous systems consideration
of the distribution of particle reactivities (see equation 12).

Both first-order substrate utilization and exponential growth
models for microbial cellulose utilization are unstructured in
the sense that the state of the biological phase (cells and other
anabolites) is characterized by a single variable. By contrast,
the framework represented by equations 19 through 22 is a
structured model because the biophase is described by more
than one variable: E and X. Models in which cells, enzymes, or
both are described by more than one variable are also possible
but will have features in common with equations 19 through
22.

Equations 19 though 22, together with the discussion in
preceding sections, provide a framework for identifying key
areas where understanding of microbial cellulose utilization is
incomplete. Areas where the current state of understanding is
particularly limiting in the context of quantitative description
based on structured models include (i) adsorption of cells to
cellulose; (ii) the relative effectiveness of cellulase when
present in CEM complexes compared to CE complexes; (iii)
the distribution of cellodextrin chain lengths taken up by cel-
lulolytic microbes; and (iv) the yields of cells and cellulase,
measured independently, and how these depend on growth
conditions.

Enhanced effectiveness of cellulase enzymes when present as
CEM complexes compared to CE complexes has been sug-
gested in the literature. Such enhancement corresponds to ε �
1 in equation 19 and may be thought of as “enzyme-microbe
synergy” by analogy to the “component-component synergy”
that is well documented for cell-free cellulase systems (see
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“Cellulase enzyme systems” above). Reese (561) and Reese
and Mandels (562) observed that rates of hydrolysis are sub-
stantially higher when mediated by growing cultures of T. reesei
than are those for cell-free enzyme preparations even under
conditions optimized for hydrolysis. It was hypothesized that
the intimate association of hyphae with cellulose accounts for
the higher hydrolysis rate in the growing culture (562). In the
case of C. thermocellum, it has been proposed that cellulo-
some-containing protuberances may act as contact corridors
channeling the diffusion of soluble degradation products from
the cellulose fibers to the cells (39, 621).

With or without the formation of protuberances, the pres-
ence of cells on the surface of cellulose fibers can be expected
to alleviate inhibition of cellulolysis by hydrolysis products. In
the absence of cells located on the surface of cellulose fibers,
transport of soluble hydrolysis products away from the fiber is
driven by diffusion through the stagnant boundary layer sur-
rounding a cellulose particle. Since diffusive transport requires
a concentration gradient, the concentration of hydrolysis prod-
ucts at the fiber surface is higher than that in the bulk solution.
In the presence of cells located on the surface of cellulose
fibers, the concentration of hydrolysis products in the vicinity
of the fiber will be lower due to both smaller diffusion distances
and the locally high rate of uptake by adherent cells. This
anticipated effect is over and above the decreased product
inhibition observed in simultaneous saccharification and fer-
mentation (SSF) with respect to separate hydrolysis and fer-
mentation (SHF) (763), which is not associated with the pres-
ence of adherent cells in boundary layers. Alleviation of
inhibition might be further enhanced if cells take up �G2

cellodextrins directly (see “Physiology of cellulolytic microor-
ganisms” above), thus avoiding the formation of cellobiose and
glucose, which are known inhibitors of cellulose hydrolysis (see
“Rates of enzymatic hydrolysis” above). Recent studies have
emphasized the importance of equilibrium and mass transfer
effects in determining the rate of nonenzymatic hydrolysis of
cellulose and hemicellulose. Torget et al. (685) have proposed
that a highly structured diffusion-resistant water layer on the
surface of cellulose fibers and the limited solubility of high-
molecular-weight oligomers are important factors limiting hy-
drolysis rates. Both Torget et al. (685) and Jacobsen and
Wyman (309) have hypothesized that removal of hydrolysis
products and/or disruption of the structured water layer is
important in accelerating hydrolysis rates. Such physical chem-
ical factors are presumably operative during enzymatic hydrol-
ysis as well and may play a role in determining the relative
effectiveness of CEM and CE complexes. It may be noted that
a first-order dependence on temperature is exhibited by both
the growth rate on crystalline cellulose (Fig. 5) and the diffu-
sion coefficient (56). The importance of mass transfer and
solubility phenomena during microbial utilization of cellulose
remains to be elucidated.

The extent of enzyme-microbe synergy has important impli-
cations in ecological and applied contexts but has not been
evaluated in a quantitative fashion. At this point, about all that
can be said is that there are several reasons to think that
enzyme-microbe synergy may exist (corresponding to ε � 1)
and little or no basis to assume that it does not (corresponding
to ε � 1).

Descriptively adequate models are available which incorpo-

rate rates of cellulose hydrolysis and cell growth—including
phenomena such as declining substrate reactivity, product in-
hibition, and batch or continuous reactors—provided that the
cellulase loading is a model input (533, 599, 633, 710). How-
ever, no structured models are available describing microbial
cellulose utilization in which YE/S is a variable model output,
and the methodological basis for testing such a model is not
established for the case where cellulase is expressed primarily
on the cell surface. Development of such models represents a
significant and achievable objective.

Beyond cellulose utilization by pure cultures, an additional
level of complexity is introduced when multiple organisms are
present either in defined cocultures or in undefined mixed
cultures (discussed in “Ecological aspects of cellulose-degrad-
ing communities” above). There are few controlled studies that
compare the rates of cellulose hydrolysis by pure cultures of
cellulolytic bacteria with those observed for undefined mixed
cultures, although such studies would be of interest.

Contrast to Soluble Substrates

Many if not most of the assumptions and conceptual cor-
nerstones applicable to analysis of systems featuring enzymat-
ically or cellularly mediated reaction of soluble substrates are
not applicable to cellulosic substrates. This point is emphasized
in Table 9.

PROCESSING OF CELLULOSIC BIOMASS—
A BIOLOGICAL PERSPECTIVE

Important distinguishing features of cellulosic biomass
among potential feedstocks for biological processing include
low purchase price, potential for supply on a very large scale,
recalcitrance to reaction, and heterogeneous composition. For
production of fuel and bulk chemicals, a feedstock having low
cost and availability on a large scale is required and thus there
is ample incentive to develop and apply technology that can
cost effectively accommodate the recalcitrant, heterogeneous
character of cellulosic biomass. For products with higher value
and lower volume (e.g., fine chemicals or pharmaceuticals),
there is much less incentive to use a low-cost feedstock, the
scale of availability feedstock is not a significant issue, and
feedstocks other than cellulosic biomass can be used which
present fewer processing challenges. Because of these factors,
it is natural in our view to focus on commodity products when
considering biological processing of cellulosic feedstocks, and
we do so here. The economics of cost-competitive commodity
processes are dominated by feedstock cost and thus require
high product yields (270, 401, 410, 763). As a result, there is a
very strong incentive to conserve the reducing equivalents
present in fermentable carbohydrate feedstocks, which is the
defining feature of anaerobic metabolism. Biological produc-
tion of commodity products from cellulosic biomass is thus
likely to involve microbial metabolism that is effectively anaer-
obic, although development of microbes for use in such pro-
cesses can in principle begin with either aerobes as well as
anaerobes or facultative anaerobes. These ideas are developed
more fully elsewhere (410).

We offer below a selective consideration of processing cel-
lulosic biomass with an emphasis on biological aspects. More
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comprehensive treatments of this topic are available (131, 410,
614, 774).

Pretreated Substrates

Incubation of naturally occurring cellulosic materials in the
presence of either pure cultures of cellulolytic microorganisms
or cell-free enzyme preparations generally results in cellulose
hydrolysis yields that are 	20% of theoretical. As a result,
process designs for biologically converting cellulosic materials
nearly always include a pretreatment step. The properties of
pretreated feedstocks are of central importance in defining
objectives for developing organisms for use in biomass conver-
sion processes (see “Organism development for consolidated
bioprocessing” below).

The term “pretreatment” is widely used in the process en-
gineering literature to refer to a process step which converts
lignocellulosic biomass from its native form, in which it is
recalcitrant to cellulase enzyme systems, into a form for which
enzymatic hydrolysis is effective. We make no attempt here to
provide a comprehensive review of the pretreatment field.
Rather, the focus of this subsection is on describing the char-
acteristics of pretreated materials as starting points for pro-
cessing cellulosic substrates and for organism development
pursuant to such processing. The reader is referred to more
comprehensive work describing the diversity, mode of action,
and evaluation of preatreatment processes (288, 309, 400, 434,
726).

Most of the �-glucosidic bonds in naturally occurring ligno-
cellulosic materials are inaccessible to cellulase enzymes by
virtue of the small size of the pores in the multicomponent
spatially heterogeneous biomass matrix as well as enzyme-

associated inaccessibility (see “Rates of enzymatis hydrolysis”
above). In addition, cellulose in naturally occurring materials is
closely associated with hemicellulose and other structural poly-
saccharides, and carbohydrate-rich microfibrils are surrounded
by a lignin seal (see “Structure and composition of cellulosic
biomass” above). Rendering lignocellulosic materials amena-
ble to enzymatic hydrolysis thus involves overcoming both
physical and chemical barriers. Compared to unpretreated ma-
terials, effectively pretreated lignocellulosic materials are gen-
erally characterized by increased surface area accessible to
cellulase enzymes (porosity) and solubilization and/or redistri-
bution of lignin. Increased porosity results from a combination
of hemicellulose solubilization, lignin solubilization, and lignin
redistribution. The relative importance of these factors differs
greatly among different pretreatment processes.

Lignin redistribution is thought to explain why dilute acid
and steam explosion are effective pretreatment processes al-
though lignin is not removed (116). It is thought that lignin
melts during pretreatment and coalesces upon cooling such
that its properties are altered substantially (87, 116, 169, 666).
The study by Ooshima et al. (506) involving the adsorption of
T. reesei cellulase to dilute-acid-pretreated hardwood prepared
at various temperatures provides an example of the effect of
pretreatment on the state of lignin and enzyme accessibility.
These investigators found that increasing the pretreatment
temperature from 180 to 220°C was accompanied by an eight-
fold decrease in the adsorption capacity of lignin and a nearly
sixfold increase in the adsorptive capacity of the cellulose.

As summarized in Table 10, proposed pretreatment pro-
cesses include dilute acid, steam explosion at high solids con-
centration, “hydrothermal” processes, “organosolv” processes
involving organic solvents in an aqueous medium, ammonia

TABLE 9. Differences between biologically mediated reaction of cellulose and soluble carbohydrate substrates

Soluble carbohydrates Cellulose

Enzymatic reaction mechanism and kinetics
Essentially all potential substrate-reactive sites are accessible Only a small fraction of substrate-reactive sites are accessible
Substrate commonly in excess; hence, rate is proportional to [ET] Excess substrate is uncommon; hence, at least partial rate

saturation with increasing [ET] is usually encountered
Concentration is the only kinetically important substrate state
variable

Conversion is an additional kinetically important substrate state
variable in at least some systems

r/[CE] is a constant throughout the course of an irreversible
reaction

r/[CE] decreases sharply over the course of the reaction

km, the substrate concentration at which half the maximum rate is
observed, is a constant independent of [ET]

The substrate concentration at which half the maximum rate is
observed increases with increasing [ET]

Cell growth, observable in batch culture
Exponential growth, during which substrate is in excess and the
concentration of cells is rate limiting, is readily observed

Exponential growth is typically not observed because substrate is
typically not in excess and perhaps also because of declining
substrate reactivity

Allocation of substrate between catabolism and cell synthesis is a
key metabolic choice facing the cell

In addition to allocation between catabolism and anabolism, a
second key metabolic choice involves allocation of carbon and
energy between synthesis of cells and cellulase

ATP is synthesized via glycolysis and post-pyruvate metabolism
(anaerobes)

Phosphorolytic cleavage of cellodextrins and cellobiose provides an
additional potential route for synthesizing high-energy bonds

Cell growth, chemostat culture
Substrate reactivity is equal to that leaving the fermentor Substrate reactivity is equal to the weighted sum of particle

reactivities integrated over the time each particle (or fraction of
particles) spends in the fermentor

Steady-state substrate concentration is independent of the feed
substrate concentration

Steady-state substrate concentration increases with increasing feed
substrate concentration
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fiber explosion (“AFEX”), and strong alkali processes using a
base such as NaOH or lime. Hydrothermal processes feature
aqueous pretreatment with very low or zero concentration of
added acid and either very low solids concentration and/or
liquid flowing through a bed of solids. While Table 10 is not
comprehensive, it does include most of the processes thought
to be promising in the context of production of fuels and
commodity chemicals from biomass. All these processes have
been shown to produce, under appropriate conditions, pre-
treated fiber derived from herbaceous and/or hardwood-de-
rived feedstocks that (i) retains nearly all of the cellulose
present in the original material and (ii) allows close to theo-
retical yields upon enzymatic hydrolysis. The forms in which
cellulose and particularly hemicellulose and lignin emerge
from pretreatment are different for different processes, as sum-
marized in Table 10.

In the context of organism development for processing cel-
lulosic biomass, several observations can be made based on the
biomass pretreatment literature.

(i) The ability to hydrolyze cellulose is an essential organism
development objective for biomass resulting from all pretreat-
ment processes. For most pretreatments, it is further necessary
that the cellulolytic enzyme system of the processing organism
be effective against crystalline cellulose. Cellulose crystallinity
does not decrease as a result of pretreatment of biomass by
dilute acid (223, 348, 678), steam explosion (546, 581), or lime
(97) under conditions resulting in high hydrolysis yields.

(ii) The ability to hydrolyze insoluble hemicellulose (as dis-
tinct from soluble hemicellulose hydrolysis products) is not an
important organism development objective for pretreatment
processes featuring essentially complete hemicellulose hy-
drolysis. Under conditions resulting in effective pretreatment,
such processes include dilute-acid pretreatment (223, 686),
steam explosion (87, 546), and hydrothermal pretreatment (64,
372, 460). Although strong-alkali pretreatment can be success-

ful without entirely hydrolyzing hemicellulose (319), it has
been observed that residual hemicellulose present after alka-
line pretreatment is hydrolyzed by commercial cellulase prep-
arations without the addition of enzymes expressly for hemi-
cellulose hydrolysis (319, 408). Thus, even if insoluble
hemicellulose is present after pretreatment, it may not be re-
quired that a processing organism produce hemicellulose-spe-
cific enzymes.

(iii) Conversion of all sugars derived from hemicellulose
during pretreatment is a highly desired organism development
objective. Utilization of hemicellulose-derived monomeric sug-
ars, and xylose in particular, has received intensive investiga-
tion for over a decade (137, 237, 272, 299, 301, 310, 433, 775).
With the exception of dilute-acid pretreatment, a substantial
fraction of dissolved hemicellulose is present as oligomers for
most processes in which associated hydrolysis products have
been characterized, including steam explosion (248, 546), hy-
drothermal pretreatment (372), AFEX (B. Dale, personal
communication) and countercurrent very-dilute-acid pretreat-
ment (R. W. Torget, personal communication). Thus, for most
pretreatment processes it is desirable that soluble oligomers
originating from hemicellulose, in addition to monomeric sug-
ars, be utilized.

(iv) To be of use in a practical process, a microorganism
must remain metabolically active in the presence of inhibitory
compounds generated during pretreatment with, at most, rel-
atively low-cost detoxification measures taken. Such com-
pounds arise from hydrolytic release of compounds present in
unpretreated biomass (e.g., organic acids, extractives, and phe-
nolics), reaction of carbohydrates and other solubilized com-
ponents to form degradation products (e.g., furfural and hy-
droxymethyl furfural), and corrosion resulting in the release of
inorganic ions (434). The amounts of inhibitors produced de-
pend greatly on process conditions and configuration. The
reader is referred to the recent review by Zaldivar et al. (774)

TABLE 10. Fate of biomass components for various pretreatment processes

Process
Fate of biomass components under conditions leading to high cellulose digestibility

Reference(s)
Cellulose Hemicellulose Lignin

Dilute-acid pretreatment Some depolymerization 80–100% solubilization,
primarily to monomers

Little or no solubilization,
extensive redistribution

223, 599, 671, 685

Steam explosion at high solids
concentration

Some depolymerization 80–100% solubilization to
a mixture of monomers
oligomers, and
degradation products

Little or no solubilization,
extensive redistribution

87, 248, 546

Hydrothermal processes
(see the text)

Some depolymerization 80–100% solubilization,
oligomers usually �50%

Partial solubilization
(e.g., 20–50%)

64, 372, 460b

Organic solvents with water Substantial solubilization
(varies but can be nearly
complete)

Substantial solubilization
(varies but can be nearly
complete)

110, 278

AFEX Some decrystallization Solubilization from 0 to
60% depending on
moisture; �90%
hydrolyzed to oligomers

Some solubilization (�10–
20%)

132a

Sodium hydroxide pretreatment Substantial swelling,
type I 3 type II

Substantial solubilization
(often �50%)

Substantial solublization
(often �50%)

726

Lime pretreatment Significant solubilization
(to 30%) under some
but not all conditions

Partial solubilization
(�40%)

96, 319

a Also, B. E. Dale, personal communication.
b Also, R. Torget, personal communication.
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and references therein for a comprehensive consideration of
inhibition-related phenomena accompanying pretreatment.

(v) It is not necessary that organisms degrade lignin, al-
though modifications that decrease cellulase binding to lignin
are potentially of value.

Process Configurations

Four biologically mediated events occur in the course of con-
verting cellulosic biomass into fuels and chemicals in processes
featuring enzymatic hydrolysis: (i) cellulase production, (ii) hy-
drolysis of cellulose and (if present) other insoluble polysaccha-
rides, (iii) fermentation of soluble cellulose hydrolysis products,
and (iv) fermentation of soluble hemicellulose hydrolysis prod-
ucts. Alternative processing configurations can be categorized
based on the degree to which these events are consolidated. As
depicted in Table 11 separate hydrolysis and fermentation (SHF)
involves four discrete process steps and as many as four different
biocatalysts. Simultaneous saccharification and fermentation
(SSF) consolidates hydrolysis and fermentation of cellulose hy-
drolysis products into one process step, with cellulase production
and fermentation of hemicellulose hydrolysis products occurring
in two additional discrete process steps. Simultaneous saccharifi-
cation and cofermentation (SSCF) involves two process steps:
cellulase production and a second step in which cellulose hydro-
lysis and fermentation of both cellulose and hemicellulose hydro-
lysis products occurs. In consolidated bioprocessing (CBP), cel-
lulase production, hydrolysis, and fermentation of products of
both cellulose and hemicellulose hydrolysis are accomplished in a
single process step.

It may be noted that the term “consolidated bioprocessing
(CBP)” is synonymous with direct microbial conversion
(DMC) (282, 456, 719). In 1996 Lynd proposed that the term
“consolidated bioprocessing” is preferable to “direct microbial
conversion” (400). This was motivated by the observation that
the CBP/DMC process configuration is no more direct than is
SSF, since both configurations feature a fermentative step
without a prior enzymatic hydrolysis step as in SHF. It is also
the case that hydrolysis and fermentation in the CBP/DMC

process configuration is no less simultaneous than in SSF.
Rather than being “direct” or “simultaneous”, the main fea-
ture differentiating CBP from both SSF and SHF is the extent
of consolidation, as indicated in Table 11.

Biomass processing technology has exhibited a trend toward
increasing consolidation over time. This trend is most evident
in the case of studies of the production of ethanol, which has
received the most attention among biomass-derived fermenta-
tion products, but is likely to be applicable to other products as
well. Prior to the mid-1980s, SHF was the most commonly
considered process configuration. Since the studies by Wright
and coworkers in 1988 (763, 764), SSF has been widely thought
to have significant economic advantages over SHF. Simulta-
neous saccharification and cofermentation is currently viewed
as an economically attractive near-term goal for process devel-
opment (762), with potential cost benefits relative to SSF. The
logical conclusion of this trend is CBP.

A process step dedicated to cellulase production is a feature of
SHF, SSF, and SSCF but not of CBP. It is usually envisioned that
dedicated cellulase production will be carried out by aerobic mi-
croorganisms. This is because of the much higher ATP yields, and
correspondingly higher potential cellulase yields, of aerobic me-
tabolism compared to anaerobic metabolism. By contrast, con-
version of hydrolysis products to small molecules for use as fuels
or bulk chemicals is likely to be carried out by microorganisms
featuring a nonoxidative catabolism for all process configurations,
as addressed at the beginning of this section.

Figure 6 contrasts metabolic aspects of process configura-
tions featuring dedicated cellulase production (SHF, SSF, and
SSCF) to CBP. In both configurations, the product(s) of inter-
est is shown resulting from anaerobic catabolism. For dedi-
cated cellulase production from the same feedstock used for
fermentation, a fraction, F, of the feedstock is used to produce
cellulase while the remainder (1 � F) of the feedstock is used
to produce the desired product(s). Most design studies of SSF
and SSCF configurations have reported values for F in the
range of 0.03 to 0.05. Values of F in this range correspond to
typical values for cellulase loading (10 to 15 FPU/g of cellulose
hydrolyzed), together with higher-than-average yields for aer-
obic cellulase production (�300 FPU/g of cellulose used to
produce cellulase [177]), and result in reaction times in the
range of 5 to 7 days (131, 762, 764). The optimum value of F
from an economic viewpoint results from minimizing the sum
of the cost of bioreactors in which cellulose hydrolysis occurs
(which is high at low values of F, accompanied by low cellulase
loading and long reaction times) and the cost and product yield
loss and other costs associated with cellulase production
(which are high at high values of F) (404). It is well known that
higher cellulase loadings result in shorter reaction times than
the economic optimum, but realizing such rates is not cost-
effective because of the combined effect of the cost of cellulase
production and the decreased product yield accompanying
higher values of F.

A small fraction of the substrate processed, corresponding to
F in Fig. 6, is available for cellulase synthesis for process
configurations featuring dedicated cellulase production. How-
ever, cellulase can potentially be synthesized at high yield on a
per-unit-substrate basis in a dedicated cellulase production
configuration because of the large amount of ATP available
from aerobic catabolism. For CBP, all of the substrate is avail-

TABLE 11. Evolution of biomass-processing schemes featuring
enzymatic hydrolysis

Biologically
mediated event Processing strategya

Cellulase
production

Cellulose
hydrolysis

Hexose
fermentation

Pentose
fermentation

a Each box represents a bioreactor (not to scale). See the text for definitions
of abbreviations.
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able for cellulase synthesis, but potential cellulase yields on a
per-unit-substrate basis are lower because of the smaller
amount of ATP available from anaerobic catabolism.

Avoidance of the cost of dedicated cellulase production is
the largest potential savings associated with CBP relative to
current SSF technology. The value of such avoidance is equal
to the cost of dedicated cellulase production, estimated at
�$0.5/gal of ethanol produced by SSF, corresponding to about
�$50/tonne of dry biomass hydrolyzed, in the comprehensive
study by Hettenhaus and Glassner (267). A detailed process
design study (405) also projected savings of this magnitude,
with CBP reducing the overall processing costs by ca. twofold
and the cost of biologically mediated process steps by ca. eight-
fold as compared to an SSF base case. Of prospective research-
driven process improvements analyzed using process and cost
models developed by the National Renewable Energy Labora-
tory, CBP has the largest potential cost savings (405, 766). The
CBP processing concept is a potential breakthrough in low-
cost processing of cellulosic biomass that is in principle appli-
cable to production of any fermentation-derived product.
However, this potential cannot be realized by organisms avail-
able today and requires the development of new and improved
CBP-enabling organisms as addressed in the following section.

ORGANISM DEVELOPMENT FOR
CONSOLIDATED BIOPROCESSING

Strategies

CBP requires a microbial culture that combines properties
related to both substrate utilization and product formation.

Desired substrate utilization properties include the production
of a hydrolytic enzyme system allowing high rates of hydrolysis
and utilization of resulting hydrolysis products under anaero-
bic conditions with a practical growth medium. Desired prod-
uct formation properties include high product selectivity and
concentrations. A cellulolytic culture with this combination of
properties has not been described to date.

Development of microorganisms for cellulose conversion via
CBP can be pursued according to two strategies. The native
cellulolytic strategy involves naturally occurring cellulolytic mi-
croorganisms to improve product-related properties such as
yield and tolerance. The recombinant cellulolytic strategy in-
volves engineering noncellulolytic microorganisms that exhibit
high product yields and tolerance so that they become able to
utilize cellulose as a result of a heterologous cellulase system.
Subsequent subsections review in detail the progress for each
of these strategies with respect to developing cultures capable
of utilizing cellulose in a CBP configuration. In the remainder
of this subsection, we comment on strategic aspects related to
hemicellulose utilization.

Over the last decade, the development of microorganisms
capable of converting xylose and other hemicellulose-derived
sugars to ethanol at high yields has been one of the most
significant advances in the fields of both biomass conversion
and metabolic engineering. Both of the strategies presented
above with respect to cellulose conversion have been success-
fully applied to xylose conversion. The native-substrate utiliza-
tion strategy is exemplified by the work of Ingram et al. with E.
coli and Klebsiella oxytoca, in which organisms that naturally
use hemicellulose-derived sugars were engineered to produce

FIG. 6. Summary of material flows and bioenergetics for process configurations featuring dedicated cellulase production and consolidated
bioprocessing.
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high product yields (299, 301). The recombinant substrate uti-
lization strategy is exemplified by the work of Ho et al. (272,
273) and Hahn-Hägerdal et al. (237) with Saccharomyces cer-
evisiae, as well as that of Zhang and coworkers with Zymomo-
nas mobilis (137, 775). In the work by these three groups, an
organism with high product tolerance and yield was engineered
so that it was able to use desired substrates. Engineering of
microorganisms for utilization of soluble hemicellulose deriv-
atives, extensively reviewed elsewhere (69, 272, 299, 310, 774),
is rather advanced with several alternative organisms being
considered for use in commercial processes. By contrast, the
engineering of microorganisms for utilization of cellulose is in
its nascent stages.

Consideration of the properties of pretreated feedstocks
suggests that it is not necessarily required that organisms used
in a CBP context possess an enzyme system specific to hydrol-
ysis of insoluble hemicellulose (see “Pretreated substrates”
above). Combining the ability to utilize cellulose and hemicel-
lulose hydrolysis products into a single process step could be
accomplished by a coculture of two compatible organisms, one
with the ability to utilize cellulose and one with the ability to
utilize pentose sugars. Such a coculture can be expected to be
stable in light of each organism having a substrate which only
it is able to use. Cocultures between cellulolytic and pentose-
utilizing microbes are common in nature and to offer improved
hydrolysis in the laboratory relative to pure cultures of cellu-
lolytic bacteria (see “Ecological aspects of cellulose-degrading
communities” above). Alternatively, the metabolic machinery
required for cellulose utilization and utilization of hemicellu-
lose sugars could be incorporated into a single organism. In
such an arrangement, simultaneous utilization of both cellu-
lose and pentoses would be desirable. This might be accom-
plished using a molecular approach by engineering the host
organism so that it does not exhibit catabolite repression. A
bioreactor-based approach is also promising in this context,
since operating conditions may be chosen so that the concen-
trations of soluble hydrolysis products are maintained below
levels triggering catabolite repression.

Native Cellulolytic Strategy

The native substrate utilization strategy for organism devel-
opment pursuant to industrial conversion of cellulose via CBP
can in principle begin with any cellulolytic microorganism. We
restrict our attention here to cellulolytic microorganisms capa-
ble of anaerobic growth. It may be noted that use of a separate
aerobic step for cell growth, as envisioned for processes involv-
ing Fusarium oxysporum (109) or Neurospora crassa (155), is
not consistent with single-step processing as implicit in the
CBP concept. We focus here on ethanol production because
ethanol has been the main product considered in studies of
CBP via the native cellulolytic strategy. Although organic acid
production using naturally cellulolytic organisms has occasion-
ally been proposed (382, 450, 556), the intolerance of de-
scribed pure cultures of cellulolytic microorganisms to low pH
appears to be a significant obstacle to this approach. Physio-
logical features of cellulolytic bacteria are considered in some
detail above (see “Physiology of cellulolytic microorganisms”)
We consider here metabolic engineering of end product me-
tabolism in solvent-forming anaerobes, tolerance to ethanol

and other products, and genetic system development. At this
time it is logical that work in these areas involving cellulolytic
organisms should build on more advanced work involving non-
cellulolytic organisms. Selected results obtained with noncel-
lulolytic organisms are therefore included in the discussion
that follows.

Metabolic engineering. Because of the high cost of feedstock
in the production of fuels and commodity chemicals from bio-
mass, a high yield (gram of product per gram of substrate) of
saleable product(s) is essential from an economic point of view
(see “Processing of cellulosic biomass—a biological perspec-
tive” above). Achieving high product yields is thus a primary
focus of organism development via the native cellulolytic strat-
egy.

Figure 7 presents the branched catabolism typical of etha-
nol-forming cellulolytic anaerobes from a conventional car-
bon-centered perspective beginning with monomeric sugars
(shown here in unphosphorylated form). This perspective sug-
gests targets for gene knockout to redirect carbon flux toward
ethanol:lactate dehydrogenase, phosphotransacetylase, and ac-
etate kinase. In all cellulolytic anaerobes for which data are
available, pyruvate is catabolized via acetyl-CoA-yielding pyru-
vate:ferredoxin oxidoreductase rather than by acetaldehyde-
yielding pyruvate decarboxylase or by pyruvate-formate lyase.
Thus, regeneration of reduced electron carriers involves not
only reduced NAD generated in the course of glycolysis but
also reduced ferredoxin generated via the action of pyruvate
dehydrogenase. Ferredoxin-NAD oxidoreductase is particu-
larly important in this context. Fig. 7 presents an electron-
centered perspective on fermentative metabolism. This per-
spective suggests that hydrogenase is a potential gene
knockout target in addition to acetate kinase and phoshotrans-
acetylase for redirecting flux away from acetic acid formation.
As may be inferred from Fig. 7, it is not possible to produce
acetate with regeneration of oxidized ferredoxin unless H2 is
produced.

Although substantial amounts of several organic end prod-
ucts are produced under most conditions by cellulolytic anaer-
obes, several lines of evidence suggest that organisms in this
category are capable of metabolizing cellulose with near-exclu-
sive production of a single end product. This is supported by (i)
a priori consideration of biochemistry, (ii) experimental results
featuring cellulolytic microorganisms producing high yields of
a single fermentation product in response to mutation and
selection and/or manipulation of the fermentor environment,
and (iii) experimental results featuring noncellulolytic micro-
organisms producing high yields of a single product in response
to mutation and selection as well as metabolic engineering.

It may be seen from Table 12 that the basic requirements of
fermentative metabolism—generation of net ATP and regen-
eration of reduced electron carriers—can be met by producing
ethanol, acetic acid, or lactic acid either singly or in combina-
tion.

Fermentation resulting in molar ratios of ethanol to organic
acids exceeding 9:1 has been reported at low temperatures for
the cellulolytic Clostridium saccharolyticum (477). Ethanol-to-
organic-acid ratios of �5 have been obtained for strains of C.
thermocellum developed using classical mutagenesis (719). The
flexibility of product metabolism in cellulolytic anaerobes is
underscored by the observation of molar ratios of ethanol to
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organic acids of 	0.1 for C. thermocellum (737) and 	0.15 for
R. albus (518) in the presence of a hydrogen-consuming meth-
anogen.

Ethanol-to-organic-acid ratios of �9 have been reported
under favorable conditions for Thermoanaerobacter ethanolicus
(742) and T. thermosaccharolyticum (268), which, although
noncellulolytic, are thought to have end product metabolism
generally similar to that of C. thermocellum. Classical mutagen-
esis techniques have been used to create strains capable of

anaerobic growth with much-reduced activity of enzymes in-
volved in product metabolism. Examples include mutants de-
ficient in acetate kinase and/or phosphotransacetylase in the
case of Thermoanaerobacter thermohydrosulfuricus (432), T.
thermosaccharolyticum (573), and E. coli (232) and mutants
deficient in lactate dehydrogenase in the case of E. coli (431).

During the 1980s, a substantial effort was devoted to strain
isolation, optimization of culture conditions, and strain devel-
opment via mutation and selection pursuant to fermenting

FIG. 7. Catabolic reactions leading to the formation of various end products by ethanol-producing cellulolytic bacteria. 1, Lactate dehydro-
genase; 2, pyruvate-ferredoxin oxidoreductase; 3, NADH-ferredoxin oxidoreductase; 4, hydrogenase; 5, phosphotransacetylase; 6, acetate kinase;
7, acetaldehyde dehydrogenase; 8, alcohol dehydrogenase; 9, glyceraldehyde-3-phosphate dehydrogenase. From references 396, 569, and 629.

TABLE 12. Catabolic stoichiometry of ethanol, acetic acid, and lactic acid formation in cellulolytic anaerobes

Step or enzyme Reactiona

Glycolysis Glucose � 2ADP � 2Pi � 2NAD� 3 2 Pyruvate� � 2 ATP � 2 NADH � 4H�

Pyruvate:ferredoxin oxidoreductase {MYE/G � MYA/G} {Pyruvate � CoASH � Fd(ox) 3 Acetyl-CoA � Fd(red) � CO2 � H�}
NADH:ferredoxin oxidoreductase {MYE/G � MYA/G} {Fd(red) � NAD� � 2H� 3 Fd(ox) � NADH � H�}
Acetaldehyde dehydrogenase MYE/G {Acetyl-CoA � NADH � H� 3 Acetaldehyde � CoASH � NAD�}
Ethanol dehydrogenase MYE/G {Acetaldehyde � NADH � H� 3 Ethanol � NAD�}
Phosphotransacetylase MYA/G {Acetyl-CoA � Pi 3 Acetyl phosphate � CoASH}
Acetate kinase MYA/G {Acetyl phosphate � ADP 3 Acetate� � ATP � H�}
Hydrogenase 2 MYA/G {Fd(red) � 2H� 3 H2 � Fd(ox)}
Lactate dehydrogenase MYL/G {Pyruvate� � NADH � H� 3 Lactate� � NAD�}

Overall Glucose � {2 � MYA/G} ADP � {2 � MYA/G}Pi 3
MYE/GEthanol � MYE/GEthanol � MYA/GAcetate �

MYL/GLactate � {MYEt/Glu � MYA/G}CO2 � {MYL/G � MYA/G}H� � 2MYA/GH2 � {2 � MYA/G}ATP

a MYE/G is the molar ethanol yield (moles of ethanol per mole of hexose); MYA/G is the molar acetic acid yield (moles of acetic acid per mole of hexose); MYL/G is
the molar lactic acid yield (moles of lactic acid/mole of hexose). Note: MYE/G � MYA/G � MYL/G � 2.
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cellulose and/or xylose with high ethanol yields (396, 401, 629,
719, 742). This work demonstrated very high ethanol yields a
sufficient number of times in a sufficient number of organisms
to provide substantial support for the biochemical and bioen-
ergetic feasibility of fermenting cellulose with ethanol as the
only significant organic end product. However, this effort did
not result in robust strains that consistently produce ethanol at
high yields under a broad range of conditions and in the hands
of different investigators (401).

At this point, we believe that the most promising path along
which to pursue the native cellulolytic organism development
strategy is via metabolic engineering using molecularly based
techniques. This, however, requires genetic systems by which
to express foreign genes in cellulolytic anaerobes, which have
in general not been available (discussed below). As such sys-
tems are developed, engineering of cellulolytic microorganisms
for CBP will benefit from results obtained over the last 15 years
pursuant to engineering of end product metabolism in noncel-
lulolytic anaerobes. Examples of these results include enhance-
ment of ethanol production in E. coli and K. oxytoca (reviewed
by Ingram et al. [299, 301]), solvent production in C. acetobu-
tylicum (reviewed by Mitchell [458]), and lactic acid production
in yeasts (2, 147, 541). In these and other cases, metabolic flux
is altered by blocking undesirable pathways, typically via ho-
mologous recombination-mediated “gene knockout” (59, 89,
221, 222, 359, 541, 744) and/or overexpression of genes asso-
ciated with desirable pathways (2, 12, 17, 75, 147, 243, 441,
542). Gene knockout is more readily applicable than is over-
expression for organisms with poorly developed genetic sys-
tems, is not subject to “saturation effects,” and can have the
added benefit of irreversibility (183). Antisense RNA has also
been used for altering catabolic flux in anaerobes (153).

Initial attempts to redirect flux commonly have unintended
consequences, often as a result of either a metabolic imbalance
involving either organic intermediates (159, 300) or electron
carriers (277) or interactions with metabolic control systems
(153). It is useful in our view to distinguish between funda-
mentally motivated studies that seek to use metabolic engi-
neering to introduce a perturbation that is interesting to study
and application-motivated studies that seek to achieve a given
result. In the latter type of study, modifications beyond that
undertaken initially are very often required to compensate for
secondary effects accompanying the original metabolic manip-
ulation. In the case of engineering E. coli to produce ethanol,
for example, first-generation strains expressing pyruvate decar-
boxylase (76, 300) did not have sufficient alcohol dehydroge-
nase activity to function well at high sugar concentrations. This
deficiency was subsequently corrected, and the performance
improved (301). The success of engineering enteric bacteria for
ethanol production and engineering yeast for lactic acid pro-
duction suggests that it is reasonable to expect success in ap-
plied studies, given (i) a sustained effort commensurate with
the complexity of the specific goal and (ii) that this goal is
consistent with stoichiometric and bioenergetic constraints im-
plicit in the metabolism of the host organism.

Growth inhibition by ethanol and other factors. The ability
or inability of cellulolytic anaerobes to utilize high concentra-
tions of substrate(s) and produce a desired product at high
concentration is important in the context of evaluating the
potential of the native cellulolytic strategy in general and of

specific host organisms in particular. Cessation of growth due
to high ethanol concentrations is of particular interest for CBP.
It is appropriate to give attention to growth limitation by fac-
tors other than ethanol because distinguishing between inhibi-
tion by ethanol and by other factors can be subtle, and because
inhibitory factors other than ethanol are likely to accompany
pretretreated feedstocks in real-world processes.

As reviewed elsewhere (298, 317), microorganisms are
thought to be inhibited by ethanol as a result of end product
inhibition of glycolytic enzymes and damage to the cell mem-
brane. The ethanol tolerance of C. thermocellum has been
investigated most extensively among cellulolytic anaerobes.
Few data are available for other cellulolytic anaerobes, al-
though such data would be of considerable interest. Most nat-
urally occurring strains of C. thermocellum exhibit rather low
ethanol tolerance; however, development of increased toler-
ance in response to exposure to ethanol has been described
often for this organism (262, 660, 719) as well as for other
thermophiles (30, 342, 397, 743). Thus, ethanol tolerance in C.
thermocellum and noncellulolytic ethanol-producing thermo-
philes appears at a phenomenological level to be inducible
rather than constitutive. As a result, rather different behavior
may be observed depending on the extent to which organisms
have been previously exposed to ethanol and transient re-
sponses to challenges with ethanol or another inhibitor are
complete. Inhibition of C. thermocellum by ethanol has been
attributed to a blockage in glycolysis associated with ethanol-
induced changes in the cell membrane (263, 264, 265).
Changes in membrane composition in response to ethanol
have also been observed in other organisms (34, 167), includ-
ing thermophiles (30, 318). Increased temperature, which, like
ethanol, increases membrane fluidity, has been observed to
markedly decrease ethanol tolerance in C. thermocellum (262,
362) as well as other organisms, both mesophilic (46, 290, 708)
and thermophilic (14, 30).

Most current designs for processes involving enzymatically
mediated hydrolysis of lignocellulosic substrates involve etha-
nol concentrations of �5% (by weight). Achieving ethanol
concentrations substantially in excess of 5% (by weight) for
such processes in the future is unlikely in light of constraints
associated with slurry handling and because there is not a large
incentive to do so in terms of economics or process energy
requirements (400). There is, however, a substantial economic
penalty associated with operation at ethanol concentrations
lower than 4% (by weight) when conventional product recov-
ery technology is used.

When considered in light of these processing requirements,
the tolerance of selected strains of C. thermocellum appears to
be sufficient with respect to added ethanol but not with respect
to the maximum concentrations of ethanol produced in studies
thus far. C. thermocellum strain SS22 (553) grows at added
ethanol concentrations up to 64 g/liter, and strains A1 (660),
C9 (262), and S7 (719) require added ethanol concentrations
in the range of 27 to 50 g/liter to be 50% inhibited. Similar
results have been reported for the xylose-utilizing noncellulo-
lytic thermophile T. thermosaccharolyticum (30). Notwith-
standing the rather high tolerance manifested with respect to
added ethanol, the highest concentrations of ethanol produced
by either of these organisms are �26 g/liter in studies to date
(403, 596, 719).
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Resolving the discrepancy between the apparent tolerance
to added ethanol and the maximum concentration of ethanol
produced for C. thermocellum and perhaps for other cellulo-
lytic anaerobes is an important objective for the native cellu-
lolytic CBP organism development strategy that will have a
substantial bearing on its feasibility. A difference between the
inhibitory effect of added and produced ethanol, in conjunc-
tion with different intracellular and extracellular ethanol con-
centrations, was proposed for yeast in studies prior to 1983 (34,
479, 497). However, subsequent unrebutted work has dis-
counted this hypothesis for yeast (133, 134, 135, 229, 395), Z.
mobilis (313), and E. coli (168). In light of these data and in
particular biophysical analyses indicating that substantial dif-
ferences between intracellular and extracellular ethanol con-
centrations across plasma membranes can exist for at most
short periods (313, 395), it would appear unlikely that this
discrepancy is due to a difference in the inhibitory effect of
added and produced ethanol.

Working with T. thermosaccharolyticum, Lynd et al. (403)
established that inhibition of continuous fermentation of high-
feed xylose concentrations is due to salt resulting from base
added for pH control and is not due to ethanol. Salt concen-
trations corresponding to those resulting from pH control also
exert a strong inhibitory effect on cellulose fermentation by C.
thermocellum (Y. Zhang and L. R. Lynd, unpublished data).
These results are consistent with the hypotheses that (i) salt
inhibition is responsible for the discrepancy observed in the
literature between the tolerance to added ethanol and the
maximum concentrations of ethanol produced by C. thermo-
cellum and other thermophilic saccharolytic bacteria and (ii)
metabolic engineering to reduce organic acid production may
provide a means to increase not only ethanol yield but also
apparent tolerance. Definitive testing of these hypotheses
awaits further study. With respect to hypothesis (ii), it may be
noted that metabolic engineering of E. coli to eliminate or-
ganic acid production allowed substantial increases in the con-
centrations of ethanol produced and substrate utilized com-
pared to results obtained with nonengineered strains. These
results are consistent with the observation that organic acids
are more inhibitory than ethanol on a molar basis in this
organism (301).

Inhibition of cellulolytic bacteria by compounds other than
ethanol that are likely to occur in industrial processing envi-
ronments has received relatively little attention, with most rel-
evant studies involving C. thermocellum. Several studies have
shown that C. thermocellum is capable of growing on pre-
treated lignocellulosic substrates that contain most or all of the
lignin present prior to pretreatment (284, 409, 582), and in a
direct comparison similar results were obtained for fermenta-
tion of Avicel and pretreated wood (407). Thus, the presence
of insoluble lignin per se does not prevent high rates and
extents of hydrolysis from being achieved (407). However, in-
hibition of C. thermocellum fermentation has been reported for
hydrolysates resulting from autoclaved corn stover (22) or
steam-exploded aspen (325, 326). Inhibition by pretreatment
hydrolyzates is widely observed for noncellulolytic microbes as
well (see “Pretreated substrates” above), and a systematic
comparison of the relative sensitivity of cellulolytic and non-
cellulolytic anaerobes with respect to such inhibition has not
been undertaken to our knowledge. Inhibition of C. thermo-

cellum by acetate, both a common by-product of pretreatment
and a fermentation product, has been investigated by Herrero
et al. (265) with respect to fermentation of cellobiose. Unac-
climated cells exhibited a 50% decrease in growth rate at
near-neutral pH and an acetate concentration of 0.28 M. Ac-
etate inhibition was attributed to decreasing the magnitude of
the transmembrane proton motive force. Russell (576) has
subsequently suggested anion accumulation as an alternative
general explanation for the toxicity of organic acids.

An important but thus far unexplained phenomenon docu-
mented for both C. thermocellum (407) and C. cellulolyticum
(158) is the decrease in substrate conversion with increasing
feed substrate concentration in continuous culture. It is un-
likely that this transition from cellulose-limited to cellulose-
sufficient conditions is the result of the extracellular concen-
tration of fermentation products, as indicated by experiments
involving product addition as well as growth on cellobiose at
high substrate concentrations. Nutrient concentrations appear
to be sufficient in these studies as well. Possible explanations
include (i) inhibition of cells, cellulase production, or the ac-
tion of cellulase due to salt arising from organic acid produc-
tion and addition of base to maintain pH control; (ii) accumu-
lation of an intracellular metabolite to inhibitory levels; and
(iii) a nutrient requirement specific to growth on cellulose. It is
necessary to understand and ultimately overcome this limita-
tion phenomenon in order to contemplate using naturally cel-
lulolytic bacteria for industrial processes; this should be viewed
as a key part of the more general issue of resolving the nature
of growth limitation in these organisms.

Genetic system development. Genetic system development
has been reviewed with respect to noncellulolytic clostridia by
Young et al. (771), Rood (571), Blaschek and White (62), and
Phillips-Jones (534) and with respect to thermophiles by Mai
and Wiegel (420). As presented by Mercenier and Chassy
(440), primary choices associated with development of a ge-
netic system include (i) the choice of strain or strains, (ii) the
choice of DNA entry method, and (iii) the choice of trans-
forming DNA. Development of transformation systems is in
general a highly empirical endeavor, relying to a very large
extent on repeated trials involving various combinations of
strains, DNA entry methods, vectors, and conditions. Such
development is particularly challenging in light of the large
number of potentially important experimental variables in-
volved and the related fact that negative results are very diffi-
cult to interpret.

It is widely observed that transformation is a strain-specific
phenomenon and that what works in one strain often does not
work in another. Screening a large number of strains has been
a useful strategy in developing transformation systems in sev-
eral organisms. For example, electrocompetent strains were
obtained by screening 62 strains of Bacillus stearothermophilus
(481) and 30 strains of Thiobacillus ferrooxidans (557). The
presence or absence of restriction systems is an important host
strain property in the context of genetic system development,
and specific methylation to avoid restriction attack has been
required to achieve significant transformation frequencies in
several cases (101, 311, 441). However restriction systems have
also been found to be absent in some gram-positive bacteria
(62, 340). Electrotransformation has often been applied in
conjunction with treatment to weaken the cell wall as a barrier
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to DNA uptake (173, 276, 418, 608) and in some cases such
treatment appears to be required. Survival of a sufficient num-
ber of viable cells to detect a relatively infrequent transforma-
tion event is of the utmost importance when working with
oxygen-sensitive anaerobes, and transformation of such organ-
isms is routinely carried out in anaerobic glove boxes (771).

Natural competence is relatively rare and has not been de-
scribed in any of the gram-positive anaerobes considered in the
reviews cited at the beginning of this subsection; therefore, all
techniques involving these organisms are based on artificially
induced DNA uptake. Described protocols are based on DNA
entry via protoplast transformation, chemically induced com-
petence, conjugation, and electrotransformation. Protoplast
transformation involves removing the cell wall (thought to be a
barrier to DNA uptake in gram-positive bacteria), DNA up-
take, and regeneration of normal walled cells (440). Such tech-
niques were reported in 1984 for heat-treated cells of C. ace-
tobutylicum (390) and in 1989 for B. stearothermophilus (765).
Chemically induced competence (e.g., using CaCl2 or polyeth-
ylene glycol) has been widely used for gram-negative bacteria
and was also used during the 1980s to develop transformation
protocols for Clostridium thermohydrosulfuricum (now Thermo-
anaerobacter ethanolicus) (634), Streptococcus lactis (591), and
Bacillus species (247, 662). Notwithstanding these reports,
transformation of gram-positive bacteria based on protoplasts
or chemically induced competence is increasingly viewed as
cumbersome, difficult to reproduce, and generally less desir-
able than electrotransformation (458, 765). Conjugation has
been used extensively for a few organisms such as C. beijer-
inckii, as reviewed by Young et al. (771), but is not widely used
to transform gram-positive bacteria. Electrotransformation is
increasingly common and is usually viewed as a preferred gene
transfer method (440, 771). Electrotransformation systems
were developed during the 1980s and 1990s in the case of
noncellulolytic mesophilic clostridia including C. acetobutyli-
cum, C. beijerinckii, C. perfringens, and at least five additional
species (771), as well as T. thermosaccharolyticum (341) and
Thermoanaerobacterium saccharolyticum (418, 419).

Vectors used in transforming gram-positive anaerobes in-
clude replicative plasmids, nonreplicative “suicide” vectors,
phage-based vectors, and conjugative transposons. We com-
ment further in this paragraph on the use of such vectors in
noncellulolytic Clostridium species, reviewed by Phillips-Jones
(534), Rood (571), and Young et al. (771), because of the
significant number of cellulolytic anaerobes in this genus and
because much progress has been made in this area in recent
decades. “Shuttle vectors” based on replicative plasmids gen-
erally include replicons from both gram-positive and gram-
negative bacteria as well as selectable markers suitable for use
in both donor and recipient strains. Most of the replicons and
markers used in Clostridium originate from other gram-posi-
tive genera, although this is not always the case. Suicide vectors
designed for either single- or double (gene replacement)-cross-
over events can be used for gene knockout studies as discussed
above (see “Metabolic engineering”). A filamentous virus-like
particle from C. acetobutylicum NCIB 6444 has been isolated
(329) and used to construct a replicative phagemid (330). Con-
jugative transposons with selectable antibiotic resistance mark-
ers may be used for gene isolation and characterization by

insertional mutagenesis, as reviewed for clostridia by Young et
al. (771).

Development of genetic systems for thermophilic cellulolytic
bacteria, and thermophiles in general, involves additional consid-
erations in addition to those relevant to such development for
mesophiles. These considerations include the stability at elevated
temperatures of antibiotics, genes coding for resistance to antibi-
otics or other phenotypic markers (418, 420), gene products con-
ferring selectable properties, and plasmid replication. While it is
important to incorporate these considerations into an experimen-
tal plan aimed at genetic system development, the literature sug-
gests that they do not represent insurmountable obstacles in this
context. Antibiotics and associated markers successfully used to
select thermophilic transformants include chloramphenicol (151,
687), erythromycin (341), kanamycin (140, 418, 634, 687, 725),
tetracycline (quoted in reference 420), and thiamphenicol (634).
All of the markers used in these studies originated from meso-
philic organisms. Replicons orginating from mesophilic organisms
have been used in all but a few cases (140, 151). Investigation of
antibiotic stability at elevated temperatures suggests that variables
other than temperature have important impacts on stability (530)
and that evaluation of antibiotic stability in the presence of spe-
cific “background” conditions to be used is advisable (420). Use of
selective markers other than antibiotic resistance in thermophiles
is of interest but has received relatively little study to date.

Heterologous expression of genes originating from cellulo-
lytic bacteria in mesophilic hosts such as E. coli has been
reported dozens if not hundreds of times. However, expression
of foreign genes in cellulolytic organisms has been reported
much less often and is in general in a nascent stage of devel-
opment comparable to that for mesophilic Clostridium in the
mid- to late 1980s.

In 1987, Tsoi et al. (687) investigated protoplast formation
and regeneration for several strains identified as C. thermocel-
lum and achieved transformation of one strain (F7) using
pHV33 with selection based on kanamycin resistance and
pMK419 with selection based on chloramphenicol resistance.
In 1989, Kurose et al. (365) reported transformation of two
thermophilic cellulolytic Clostridium strains using a shuttle vec-
tor conferring chloramphenicol resistance. In 1992, Coccon-
celli et al. (115) reported electrotransformation of R. albus
using pSC22 and pCK17. There have been no subsequent re-
ports citing any of these three papers either by the groups
responsible for them or by others.

More recently, several groups have attempted to transform
C. thermocellum, thus far without success. C. thermocellum
ATCC 27405 possesses an MboI-like (5�-GATC-3� recognition
sequence) restriction system that can be protected by the dam
methylation system (340). Interestingly, this is also the case for
four additional thermophilic, cellulolytic strains (511), suggest-
ing that this restriction system may be a conserved feature
among such strains. The occurrence of antibiotic sensitivity
requisite for use of convenient selective markers appears wide-
spread in thermophilic, cellulolytic anaerobes (511).

In 1998, conjugal transfer of transposon Tn 1545 from C.
beijerinckii to Eubacterium cellulosolvens was reported by
Anderson et al. (15). Recently, Jennert et al. (311) reported
gene transfer to C. cellulolyticum ATCC 35319 via both con-
jugation and electrotransformation. Conjugative gene transfer
was achieved using both pCTC1 with E. coli as the donor and
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Tn 1545 with Enterococcus faecalis as the donor. However,
conjugal gene transfer frequencies were low, as also observed
for E. cellulosolvens (15), and results were difficult to repro-
duce. Electroporation proved a more reliable method of gene
transfer in the study by Jennert et al. (311), but only once
incoming DNA protected from a restriction system recognizing
the sequence 5�-CCGG-3�. More detailed studies of electro-
transformation of C. cellulolyticum have been reported by Tar-
dif et al. (669). Optimal conditions for electropermeabilization
were determined based on measurement of ATP leakage
(626). Transformants were obtained at field strengths of 7 or
7.5 kV cm�1 but not at other field strengths. Improved trans-
formation frequencies were observed in liquid medium com-
pared to solid medium, for which plating efficiencies were low.
Plasmid DNAs including five different replicons were estab-
lished with approximately equal efficiency (311), suggesting
that proper methylation and optimization of electrotransfor-
mation conditions were in this case more critical than the
source of transforming DNA.

Recombinant Cellulolytic Strategy

The recombinant cellulolytic strategy for organism develop-
ment pursuant to cellulose conversion via CBP begins with non-
cellulolytic microorganisms having excellent product formation
properties and involves heterologous expression of a functional
cellulase system. Such heterologous expression has been under-
taken for a variety of purposes with a variety of microorganisms.
We focus here on studies aimed at, or at least anticipating, en-
ablement of growth on cellulose. Thus, we do not, for example,
catalogue the vast and important literature associated with clon-
ing cellulase components in E. coli for the purpose of enzymo-
logical studies. Heterologous expression of cellulase pursuant to
growth enablement has been investigated to date primarily in S.
cerevisiae, enteric bacteria, and Z. mobilis. We focus on the body
of work involving these three organisms because this encompasses
the most advanced embodiment of the recombinant cellulolytic
organism development strategy to date. Some work on heterolo-
gous cellulase expression has been undertaken with additional
hosts (328, 419, 520), whose potential utility should not be dis-
missed. The possibility of restoring functional expression of cryp-
tic cellulase genes in C. acetobutylicum (606) is also intriguing.
General properties of yeast, enteric bacteria, and Z. mobilis as
industrial biocatalysts, discussed elsewhere (774), are sufficiently
established that an actively cellulolytic strain based on any of
these hosts would probably find industrial application. We do not
comment further on such properties here except to note that both
the suitability of these organisms for use in industrial processes
and the tools for genetic manipulation are much better estab-
lished than is the case for naturally cellulolytic anaerobes (see
“Native cellulolytic strategy” above). As discussed in the conclud-
ing discussion, these advantages must be weighed against the
difficulty of enabling rapid growth on pretreated lignocellulose by
organisms that are not naturally cellulolytic.

Before considering heterologous expression of cellulase en-
zyme systems in detail, it is worthwhile to first briefly examine
the question of what components are, at a minimum, needed
for a functional cellulase system in an organism that is not
naturally cellulolytic. This question is approached with respect

to pretreated substrates for which no hemicellulose-specific
enzyme activities are required (see “Pretreated substrates”
above). It should be recognized that the question of what
constitutes a rudimentary saccharolytic enzyme system is con-
siderably more complicated for nonpretreated (hemicellulose-
containing) substrates and perhaps for some pretreated sub-
strates as well.

For a noncomplexed cellulase system, the literature suggests
that protein-specific hydrolysis rates will be lower if the follow-
ing components are not present: a cellobiohydrolase attacking
reducing ends, a cellobiohydrolase attacking nonreducing
ends, an endoglucanase, and a �-glucosidase (either extracel-
lular or cell associated). At least the cellobiohydrolases should
have a CBM. For complexed cellulases, the following mini-
mum set of components appear to be required: a scaffoldin
protein with a CBM, at least two cohesins and a domain that
binds to a cell wall-anchoring protein; a cell wall-anchoring
protein; and at least one exoglucanase and an endoglucanase,
both containing dockerins capable of binding to the scaffoldin
protein. In addition, either a �-glucosidase or cellodextrin and
cellobiose phosphorylases, together with the appropriate per-
meases, would be required.

Studies with reconstituted noncomplexed cellulase systems
at roughly the levels of complexity indicated above mediate
relatively rapid hydrolysis of crystalline cellulose in the case of
both non-complexed (65) and complexed systems (188). Inclu-
sion of cellulase components or other cellular features in ad-
dition to those listed may well be beneficial, and it is antici-
pated that the identity of such components will become more
clear in the course of progress toward developing recombinant
cellulolytic organisms.

Heterologous cellulase expression in bacteria.

(i) Zymomonas mobilis. Several cellulase-encoding genes
have been cloned and expressed in Z. mobilis with various
degrees of success. Using a broad-host-range, mobilizable plas-
mid vector, the endoglucanase gene (eglX) from Pseudomonas
fluorescens subsp. cellulosa was introduced into Z. mobilis
(380). The transcription of the exlX gene was initiated from the
CAT promoter present on the vector. The expression was
rather poor since the CAT gene was insertionally inactivated
during the cloning construction. This recombinant strain, how-
ever, produced the heterologous endoglucanase intracellularly
throughout the growth phase independent of the glucose con-
centration in the medium (380). Similarly, introduction of the
Bacillus subtilis endoglucanase into Z. mobilis also resulted in
poor expression, and again no activity was obtained in the
culture supernatant of the transformants (770).

In contrast to the P. fluorescens and B. subtilis genes, the
endoglucanase gene (celZ) of Erwinia chrysanthemi was effi-
ciently expressed in Z. mobilis (77). The specific activity of the
Z. mobilis enzyme was comparable to that of the parent strain
of E. chrysanthemi. Biosynthesis of CelZ was reported to occur
during the exponential growth phase of Z. mobilis. Approxi-
mately 35% of the enzyme was released into the medium in the
absence of detectable cell lysis. The endoglucanase appeared
to be located in the periplasmic space of transformed Z. mo-
bilis cells (77). Another cellulase gene that has been success-
fully expressed in Z. mobilis was cloned from Acetobacter xyli-
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num (502). The CMCase gene from A. xylinum was efficiently
expressed in Z. mobilis, and about 75% of the enzyme activity
was detected in the periplasmic space. Few reports of heterol-
ogous cellulase expression in Z. mobilis have appeared in the
last 5 years.

(ii) Enteric bacteria. Two E. chrysanthemi endoglucanases,
encoded by celY and celZ, and the A. xylinum cellulase gene
have been expressed in both E. coli as well as the related
enteric bacterium K. oxytoca (230, 502, 755, 779, 780, 781, 782).
Initially the expression of celY in E. coli was poor due to
promoter construction (230). With a low-copy-number vector,
two E. coli glycolytic gene promoters (gap and eno) were tested
and found to be less effective than the original E. chrysanthemi
celZ promoter (782). However, by using a surrogate promoter
from Z. mobilis, the expression of celZ in E. coli was increased
sixfold. With this construct, large polar inclusion bodies were
evident in the periplasmic space of the recombinant E. coli
strain. Addition of the out genes from E. chrysanthemi caused
a further increase in the production of CMCase activity and
facilitated the secretion or release of more than 50% of the
activity into the culure medium (782). The enhancement of
expression of the E. chrysanthemi endoglucanase in E. coli
achieved in the latter study is underlined by the fact that the
total cellulase activity was estimated to represent 4 to 6% of
the total cellular protein. The same cloning strategy in K.
oxytoca resulted in a recombinant strain that produced CM-
Case activity equivalent to 5% of the total cellular protein (779).

In subsequent studies, Zhou and Ingram (780) found strong
evidence for synergistic hydrolysis of CMC and acid-swollen
cellulose by the two endoglucanases encoded by celZ and celY.
CelY was reported to be unable to hydrolyze soluble cellooli-
gosaccharides (cellotetraose and cellopentaose), but it hydro-
lyzed CMC to fragments averaging 10.7 glucosyl units (780). In
contrast, CelZ hydrolyzed cellotetraose, cellopentaose, and
amorphous cellulose to produce cellobiose and cellotriose as
the major end products. CelZ hydrolyzed CMC to fragments
averaging 3.6 glucosyl units. In combination, CelZ and CelY
hydrolyzed CMC to smaller fragments having an average de-
gree of polymerization of 2.3 hexose units (780). It was inferred
that full synergy was obtained by sequential hydrolysis of CMC,
with CelY acting first. This line of inquiry was then taken one
step further by coexpressing the celY and celZ gene constructs
in a K. oxytoca strain with the native ability to transport and
metabolize cellobiose, thereby eliminating the need for sup-
plemental �-glucosidase (778). In cellulose fermentation trials,
Zhou et al. (778) found that most of the beneficial contribution
could be attributed to CelY rather than CelZ. During the
fermentation of crystalline cellulose with low levels of com-
mercial cellulases of fungal origin, these recombinant cellu-
lase-producing K. oxytoca strains produced up to 22% more
ethanol than did the untransformed parental strain (778). Most
recently, Zhou and Ingram (781) demonstrated growth and
ethanol production on amorphous cellulose in the absence of
added hydrolytic enzymes by a derivative of K. oxytoca M5A1
carrying chromosomally integrated copies of the Z. mobilis pdc
and adhB genes for ethanol production and the celY and celZ
endoglucanase genes of E. chrysanthemi. This recombinant
strain, K. oxytoca SZ21, was reported to produce 20,000 U of
endoglucanase activity per liter during fermentation. In com-
bination with the native ability to metabolize cellobiose and

cellotriose, this transgenic strain was able to ferment amor-
phous cellulose to ethanol with yields 58 to 76% of theoretical.

Heterologous cellulase expression in yeast. The often-un-
derestimated diversity of yeast species encompasses organisms
with a broad range of properties that differ from S. cerevisiae
and could be useful for CBP. However, S. cerevisiae has re-
ceived the most attention with respect to heterologous cellu-
lase expression as well as the production of ethanol and other
commodity products (570).

(i) Endogenous saccharolytic enzymes of S. cerevisiae. Al-
though our central focus is the heterologous production of
saccharolytic enzymes, we first consider endogenous saccharo-
lytic enzymes produced by S. cerevisiae. This is of interest here
because such enzymes may augment the effectiveness of het-
erologous cellulase components and because the expression of
natural saccharolytic enzymes may provide clues to effective
expression of recombinant enzymes. While industrial strains of
S. cerevisiae are unable to ferment polysaccharides, certain
strains produce saccharolytic enzymes with limited activity.
These endogenous genes include the glucoamylase genes
(STA1, STA2, STA3, and SGA1) of the diastatic strains of S.
cerevisiae (544), the pectinase genes (PGU1 and PGL1) of
Saccharomyces bayanus var. uvarum (61, 216), and the glu-
canase genes present in all S. cerevisiae strains (544).

The exo-�-1,3-glucanases produced by S. cerevisiae yield glu-
cose as the end product (143, 472), whereas endo-�-1,3-glu-
canase releases a mixture of oligosaccharides with glucose as
the minor product (482). Because �-1,3-glucan is the main
structural polysaccharide responsible for the strength and ri-
gidity of the yeast cell wall, �-1,3-glucanases have been sug-
gested to play a role in important morphogenetic processes
involving the controlled autolysis of �-1,3-glucan. During veg-
etative growth, several endo- and exo-1,3-�-glucanases are syn-
thesized, some of which are secreted only to remain entrapped
in the cell wall whereas others are released to the surrounding
medium (181). In turn, the meiotic cycle leads to the induction
of a new �-1,3-glucanase not present in vegetatively growing
cells (120, 478). �-1,3-Glucanases possibly effect controlled cell
wall hydrolysis during cell expansion, budding, conjugation,
and sporulation. However, there is no direct evidence pointing
to the involvement of these enzymes in particular functions
during cytodifferentiation of the yeast cell (482).

Cloned and characterized �-1,3-glucanase genes from S. cer-
evisiae include EXG1, EXG2, BGL1, BGL2, SSG1, and SPR1
(343, 363, 478, 482, 593). From the restriction maps, nucleotide
sequences, and chromosomal map positions it can be con-
cluded that EXG1 is identical to BGL1 and that SSG1 is
identical to SPR1. The chromosomal location of these four
�-1,3-glucanase genes in S. cerevisiae is as follows: EXG1/
BGL1 on chromosome XII, EXG2 on chromosome IV, BGL2
on chromosome IV, and SSG1/SPR1 on chromosome XV (120,
702). The EXG1 (BGL1) gene encodes a protein whose dif-
ferential glycosylation accounts for the two main extracellular
exo-1,3-�-glucanases (EXGI and EXGII), present in the cul-
ture medium of vegetatively growing cells (181, 371, 482). A
second gene, EXG2, encodes a minor exo-1,3-�-glucanase
(EXGIII) that is a high-molecular-weight protein exhibiting a
high carbohydrate content but showing a significant degree of
similarity in its protein fraction to that of the EXGI and EX-
GII exo-1,3-�-glucanases (371). A third gene, BGL2, encoding
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an endo-�-1,3-glucanase (472), has also been cloned (343).
The EXG1 and EXG2 products are mainly secreted into the
medium, whereas the BGL2 product is incorporated into the
cell wall (472). A fourth gene, SSG1 (SPR1), encoding a sporu-
lation-specific exo-�-1,3-glucanase, was cloned and character-
ized (478, 593). The predicted amino acid sequences of the
polypeptides encoded by SSG1 and BGL2 are not homologous,
whereas the SSG1, EXG1, and EXG2 gene products are highly
homologous, differing mainly in their amino-terminal hydro-
phobic sequences (593). These leader sequences probably play
a decisive role in directing these enzymes to particular subcel-
lular locations, with the SSG1-encoded product remaining as
an intracellular protein, presumably associated with the nas-
cent ascospore envelope. The hydrophobic leader sequence of
the SSG1-encoded protein fulfills the structural requirement
for incorporation into a membranous system that allows its
translocation into the ascospore wall (593). In view of the
strong homology between the EXG1, EXG2, and SSG1 gene
products and their different subcellular locations and timing of
production, it is tempting to speculate a common evolutionary
origin of the exo-�-1,3-glucanase genes with the acquisition of
distinct structural and regulatory features that would allow
them to respond to specific signals during the cell cycle (593).
Further discussion of the expression, regulation, and function
of these genes may be found elsewhere (544).

(ii) Expression of heterologous cellulase genes in S. cerevi-
siae. Genes encoding cellulases have been cloned from various
bacteria, filamentous fungi and plants and expressed in S. cer-
evisiae (Table 13). From Table 13 it is evident that a wide range
of bacterial genes encoding cellulases have been cloned and
expressed in S. cerevisiae. The endo-�-1,3-1,4-glucanase gene
from Bacillus subtilis was expressed in S. cerevisiae under its
own promoter and signal sequences (269, 628). The synthesis
of high levels of �-glucanase in brewing yeast strains was
achieved by placing this gene under the control of the S. cer-
evisiae ADH1 promoter on a high-copy-number 2�m-based
plasmid vector (92). The fact that no extracellular endo-�-1,3-
1,4-glucanase activity could be detected in cultures of S. cer-
evisiae was attributed to the inability of yeast to process the
protein so as to promote secretion. However, even when the
�-glucanase gene was fused to the ADH1P-MF�1S expression-
secretion cassette, no extracellular enzyme activity could be
detected in culture fluids of yeast transformants (704). By
contrast, it was found that when the endo-�-1,4-glucanase gene
(end1) from Butyrivibrio fibrisolvens was inserted into the same
expression-secretion cassette (ADH1P-MF�1S-end1-TRP5T;
designated END1), high levels of �-glucanase activity were
secreted by laboratory strains of S. cerevisiae as well as wine
and distillers’ yeasts (701, 704).

The Bacillus circulans �-1,3-glucanase gene (bglH) has also
been expressed in S. cerevisiae (480). Transcription of bglH was
directed by the yeast GAL1 and SUC2 gene promoters, whereas
secretion of �-glucanase was directed by the SUC2-encoded
leader peptide. The presence of bacterial �-1,3-glucanase in the
medium caused inhibition of yeast growth and cell expansion.
Expression of SUC2-bglH in S. cerevisiae resulted in decreased cell
size and expansion of vacuoles. The cause of these different symp-
toms was interpreted to be erosion of the �-1,3-glucan-containing
cell wall by the exogenous enzyme and expression of bglH, leading
to stress in the cells. The toxic effect of this bacterial �-1,3-glu-

canase in S. cerevisiae was evaded by prolonged culturing (15
days) at low temperature (16°C). Cho and Yoo (106) achieved
high levels of expression when the B. circulans �-glucosidase gene
(bgl) and the endo/exoglucanase gene (cel) from an unidentified
Bacillus sp. (strain DO4) were inserted between the yeast ADH1
promoter and the PGK1 terminator sequences, with no apparent
inhibitory effect on the growth of S. cerevisiae transformants.

Two endo-�-glucanase genes from thermophilic bacteria
were cloned and expressed in S. cerevisiae without replacing
the bacterial gene promoters and secretion signal sequences.
The specific activity of the C. thermocellum enzyme synthesized
in yeast was about 28% of that found in E. coli (580). By
contrast, the specific activity of the endo-�-glucanase from an
unidentified thermophilic anaerobe produced in S. cerevisiae
was three- to sevenfold higher than in E. coli (281). The cel-
lobiohydrolase gene from the latter bacterium was also ex-
pressed in S. cerevisiae (583). When this gene was placed under
the control of the SUC2 promoter and invertase secretion
signal, no cellobiohydrolase was secreted by the yeast transfor-
mant, suggesting that the translocation of the hybrid protein
was influenced by the protein structure (689). When the SUC2
sequences were replaced by the STA1 promoter and glucoamy-
lase secretion signal, the recombinant yeast secreted approxi-
mately 40% of the cellobiohydrolase synthesized into the cul-
ture medium. Alteration of the amino acid residues at the
cleavage site resulted in a 3.5-fold increase in the total cello-
biohydrolase production but did not affect the efficiency of
secretion into the medium (689).

The endo-�-1,4-glucanase gene (cenA) from C. fimi was
expressed in S. cerevisiae under the control of the yeast ADH1
and MEL1 (melibiase) gene promoters (627, 628). Secretion of
the active enzyme by S. cerevisiae was greatly increased when
the leader signal of the K1 killer toxin of melibiase was inserted
immediately upstream of, and in frame with, the bacterial
�-glucanase sequence. An S. cerevisiae strain expressing both
the C. fimi cenA-encoded endo-�-1,4-glucanase (Eng) and the
cex-encoded exo-�-glucanase (Exg) was able to saccharify filter
paper and pretreated aspen wood chips in reaction mixtures
that were supplemented with �-glucosidase (130, 754). In a
similar study, the endoglucanase gene (515) and the �-gluco-
sidase genes (551, 552) from Cellulomonas biazotea were also
cloned and successfully expressed in S. cerevisiae.

In barley, approximately 75% of the endosperm cell wall
consists of �-1,3-1,4-glucans. During germination as well as
malting in the brewhouse, �-glucanase isoenzymes are secreted
from the aleurone and scutellum and released into the en-
dosperm. With the aim of constructing a glucanolytic brewing
yeast strain, the �-1,3-1,4-glucanase gene from barley was
cloned and expressed in S. cerevisiae (308). This gene was fused
in frame to the signal sequences of the mouse �-amylase, yeast
PHO5-encoded phosphatase, and SUC2-encoded invertase
(504). These constructs were inserted behind the ADH1 and
PGK1 promoters. The replacement of the ADH1 promoter
with the PGK1 promoter resulted in a 20- to 100-fold increase
in �-glucanase activity. The invertase leader peptide directed
secretion of the �-1,3-1,4-glucanase more efficiently than did
the leader peptides of �-amylase and phosphatase.

Regulated expression of the Nicotiana plumbaginifolia �-1,3-
glucanase gene in S. cerevisiae resulted in a recombinant strain
which can controllably lose some of its cell wall rigidity without

554 LYND ET AL. MICROBIOL. MOL. BIOL. REV.

 on S
eptem

ber 21, 2019 by guest
http://m

m
br.asm

.org/
D

ow
nloaded from

 

http://mmbr.asm.org/


lysis (144). This gene was expressed under the control of the
yeast GAL1 promoter and the MF�1 secretion signal se-
quence. Production of �-1,3-glucanase by S. cerevisiae led to a
strong growth inhibition by interfering with the cell wall growth
from within the cell, and to a loss of up to 20% of some
periplasmic enzymes as evidenced by the release of normally
periplasmic-associated invertase.

Several cellulase genes from various fungi have also been
expressed in S. cerevisiae. Five endo-�-1,4-glucanases (encoded
by egl1, egl2, egl3, egl4, and egl5) and two cellobiohydrolases
(CBHI and CBHII) from T. reesei were efficiently secreted into
the culture medium by S. cerevisiae transformants (4, 27, 521,
522, 525, 586, 588, 655, 783, 784). Similar results were observed

when the endo-�-1,4-glucanase gene from Trichoderma longi-
brachiatum was expressed in a wine yeast strain (528, 529). The
cDNA copies of egl1, egl3, cbh1, and cbh2, carrying the T. reesei
signal sequences, were expressed under the control of the yeast
PGK1 and ENO1 gene promoters. These enzymes were not
secreted efficiently until the late exponential or stationary
growth phase, rendering the yeast cells larger and more irreg-
ular in shape (523). Both the endo-�-1,4-glucanases and cel-
lobiohydrolases carrying the T. reesei leader peptides, effi-
ciently entered the secretory pathway of S. cerevisiae, but they
were produced in highly glycosylated forms and were hetero-
geneous in size. It would seem that these proteins had under-
gone extensive elongation of the outer mannose chains in the

TABLE 13. Cloned cellulase genes expressed in S. cerevisiae

Enzyme Gene(s) Donor Reference(s)

Endo-�-glucanases
Endo-�-1,3-glucanase bglH Bacillus circulans 480
Endo-�-1,3-1,4-glucanase Bacillus subtilis 92

end1 269
628

Endo-�-1,4-glucanase end1 Butyrivibrio fibrisolvens 531, 701, 703
Endoglucanase Cellulomonas biazotea 515
Endo-�-1,4-glucanase cenA Cellulomonas fimi 627, 628, 754
Endo-�-1,4-glucanase Trichoderma longibrachiatum 528, 529
Endo-�-glucanase Clostridium thermocellum 580
Endo-�-glucanase Thermophilic bacterium 281
Endo-�-1,3-glucanase BGL2 Saccharomyces cerevisiae 343

472
Endo-�-1,3-1,4-glucanase I (EGI) (EGI) � egl1 Trichoderma reesei 4, 27, 522, 696
Endo-�-1,3-1,4-glucanase III (EGIII) egl1, egl3 egl4, egl5 Trichoderma reesei 522, 525, 586, 588, 655, 784
FI-carboxymethylcellulase Aspergillus aculeatus 505, 688
Endo-�-1,3-1,4-glucanase Barley 308, 679
Endo-�-1,3-glucanase Nicotiana plumbaginifolia 144

Exo-�-glucanases
Exo-�-1,4-glucanase cex Cellulomonas fimi 130
Exo-�-1,3-glucanase I � II EXG1/BGL1 Saccharomyces cerevisiae 482
Exo-�-1,3-glucanase III EXG2 Saccharomyces cerevisiae 343

Cellobiohydrolases
Cellobiohydrolase CEL3 Agaricus bisporus 108
Cellobiohydrolase cbh1 Aspergillus aculeatus 475, 476, 661
Cellobiohydrolase Clostridium thermocellum 583, 689
Cellobiohydrolase Penicillium janthinellum 351
Cellobiohydrolase CBH1 Phanerochaete chrysosporium 531, 703, 705
Cellobiohydrolase Thermophilic bacteria 689
Cellobiohydrolase I (CBHI) cbh1 Trichoderma reesei 4, 521, 696
Cellobiohydrolase II (CBHII) cbh2 Trichoderma reesei 4, 27

525, 783

Endo/exoglucanases
Endo/exoglucanase cel Bacillus sp. strain DO4 107, 241

Cellodextrinases
Cellodextrinase celA Ruminococcus flavefaciens 531, 702, 705

�-Glucosidases
�-Glucosidase bgl1 Aspergillus aculeatus 661, 688
�-Glucosidase Aspergillus niger 524
�-Glucosidase bgl Bacillus circulans 106, 107
�-Glucosidase bglA, bglB, bglC Cellulomonas biazotea 550, 551
�-Glucosidase BGLN Candida molischiana 590
�-Glucosidase Candida pelliculosa 352
�-Glucosidase Kluyveromyces lactis 558, 559
Cellobiase BGL1 Saccharomycopsis fibuligera 413, 531, 705
�-Glucosidase BGL2 Saccharomycopsis fibuligera 413
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Golgi apparatus. However, these large and extensively glyco-
sylated proteins were secreted efficiently and passed through
the yeast cell wall to the culture medium. More than 80% of
these cellulases were detected in the yeast culture medium.
Most of the intracellular enzymes were located in the periplas-
mic space, and practically no enzyme was found soluble in the
cytoplasm (523). Despite overglycosylation of the cellulases
produced by S. cerevisiae, the specific activity of the yeast-made
EGI was not significantly altered whereas a slight decrease in
the specific activity of the yeast-made CBHII was observed in
comparison with the native enzymes (27). The binding of the
recombinant CBHII at a concentration of 30 �g/ml to crystal-
line cellulose was also decreased since only 50 to 70% of the
yeast-made enzyme was bound to cellulose under conditions
where 100% of the T. reesei enzyme was bound (521). This
reduced ability to bind to the substrate was attributed to hy-
perglycosylation. However, the affinity of recombinant CBHII
for crystalline cellulose was concentration dependent, indicat-
ing that the yeast-produced hyperglycosylated enzyme proba-
bly forms aggragates that bind less efficiently (523). CBHII still
had greater activity than EGI against crystalline cellulose,
whereas in the case of amorphous substrate the order was
reversed (27). Evidence for synergism was obtained when mix-
tures of the two recombinant enzymes were used with a con-
stant total protein dosage. Both yeast-produced enzymes were
active against barley �-1,3-1,4-glucan but were inactive against
�-1,3-1,6-glucan (laminarin). CBHII was inactive against xylan,
whereas EGI exhibited considerably greater activity against
insoluble, unsubstituted hardwood xylan than against amor-
phous cellulose. By comparison with two purified xylanases of
T. reesei, the recombinant EGI produced xylooligosaccharides
with longer mean chain length when acting on both substituted
and unsubstituted xylan substrates (27).

Another fungal cellobiohydrolase gene that was cloned and
expressed in S. cerevisiae originated from P. chrysosporium. A
cDNA fragment encoding the cellobiohydrolase (cbh1-4) was
amplified and cloned by PCR and expressed. The cbh1-4 gene
was successfully expressed in S. cerevisiae under the control of
the PGK1 promoter. The native P. chrysosporium signal se-
quence mediated secretion of cellobiohydrolase in S. cerevisiae.
The construct was designated CBH1 (703). The CBH1-en-
coded activity in the recombinant S. cerevisiae was, however,
rather low. By contrast, it was reported that, when the cello-
biohydrolase gene (cel3) from Agaricus bisporus was fused to
the yeast SUC2-encoded secretion signal, the yeast transfor-
mants showed enzymatic activity toward cellulose. However,
long reaction times were required for degradation of CMC
(108). Similar results were reported for the expression of a
cellulase gene (resembling the P. chrysosporium cbh1-4 gene)
from Penicillium janthinellum in S. cerevisiae (351).

In other work directed toward developing cellulolytic yeasts,
a cDNA fragment encoding the FI-carboxymethylcellulase (FI-
CMCase) of Aspergillus aculeatus was linked to the GAP (glyc-
eraldehyde-3-phosphate dehydrogenase) promoter and trans-
formed into S. cerevisiae (505). Production of FI-CMCase by S.
cerevisiae was shown to be growth associated, but 92% of the
total enzyme activity was not secreted into the medium. Clon-
ing and expression of cellobiohydrolase (cbh1) and �-glucosi-
dase (bgl1) genes of A. aculeatus in S. cerevisiae have been
reported in a series of four papers (474, 476, 661, 688). It was

found that by coexpressing the A. aculeatus cellobiohydrolase
(cbh1) and �-glucosidase (bgl1) genes in S. cerevisiae the yeast
transformants were able to hydrolyze up to 59% of added
Avicel (661). Murai et al. (474, 475) succeeded in anchoring
these enzymes on the cell surface of S. cerevisiae. The cello-
biohydrolase and �-glucosidase genes, linked to the yeast gly-
coraldehyde-3-phosphate dehydrogenase promoter, were indi-
vidually fused with the gene encoding the C-terminal half (320
amino acid residues from the C terminus) of the yeast �-ag-
glutinin before they were introduced jointly into S. cerevisiae.
These chimeric enzymes were delivered to the yeast cell sur-
face by the secretion signal sequence of the native signal se-
quence of the A. aculeatus cellobiohydrolase and by the secre-
tion signal sequence of the Rhizopus oryzae glucoamylase for
�-glucosidase, respectively. The cellobiohydrolase and �-glu-
cosidase activities were detected in the cell pellet fraction, not
in the culture supernatant. The display of these enzymes on the
yeast cell surface was confirmed by immunofluorescence mi-
croscopy, and yeast cells displaying these cell surface-anchored
enzymes could grow on cellobiose or water-soluble cellooligo-
saccharides as the sole carbon source. This report by Murai et
al. (475) demonstrated that the cell surface-engineered yeast
with these “immobilized” cellobiohydrolase and �-glucosidase
proteins could be endowed with the ability to assimilate cel-
looligosaccharides.

To enable S. cerevisiae to assimilate cellooligosaccharides,
the Ruminococcus flavefaciens cellodextrinase gene (celA) was
inserted between the yeast ADH1P-MF�1S expression-secre-
tion cassette and the TRP5T terminator (702). The ADH1P-
MF�1S-celA-TRP5T (designated CEL1) construct conferred to
S. cerevisiae transformants an ability to synthesize and secrete
cellodextrinase. This enzyme has a predominantly exo-type
action on cellooligosaccharides, and cellobiose is the major
end product of cellodextrin hydrolysis.

S. cerevisiae does not contain any �-glucosidase activity and
seems to lack an uptake system for cellobiose. With the aim of
constructing cellobiose-fermenting strains of S. cerevisiae,
�-glucosidase genes were isolated from A. niger, Candida pel-
liculosa var. acetaetherius, S. fibuligera, and Kluyveromyces lactis
(352, 413, 524, 558, 559). A laboratory strain of S. cerevisiae
producing the K. lactis �-glucosidase intracellularly failed to
grow on cellobiose. Growth could be achieved only if a strain
permeable to the sugar derivative 5-bromo-4-chloro-3-indolyl-
�-D galactoside (X-Gal) (and most probably to cellobiose) was
used as a host (559). Approximately 80% of the C. pelliculosa
�-glucosidase produced by S. cerevisiae was located in the
periplasmic space (352). This periplasmic �-glucosidase activ-
ity facilitated growth on cellobiose. The �-glucosidase gene of
Candida molischiana has also been cloned and successfully
expressed in S. cerevisiae (590). In another instance, two �-glu-
cosidase genes (BGL1 and BGL2) derived from S. fibuligera
were expressed in S. cerevisiae (413). The substrate specificities
of these two enzymes differed; the BGL1-encoded cellobiase
hydrolyzed cellobiose efficiently, whereas the BGL2-encoded
aryl-�-glucosidase did not. This finding is consistent with the
observation that the S. cerevisiae transformant carrying the
BGL1 fermented cellobiose to ethanol but the transformant
carrying BGL2 did not.

Van Rensburg et al. (705) have introduced into S. cerevisiae
genes chosen with the intention of expressing a rudimentary cel-

556 LYND ET AL. MICROBIOL. MOL. BIOL. REV.

 on S
eptem

ber 21, 2019 by guest
http://m

m
br.asm

.org/
D

ow
nloaded from

 

http://mmbr.asm.org/


lulase system: the B. fibrisolvens endo-�-1,4-glucanase (END1),
the P. chrysosporium cellobiohydrolase (CBH1), the R. flavefa-
ciens cellodextrinase (CEL1), and the S. fibuligera cellobiase
(BGL1) gene constructs. The END1, CBH1, and CEL1 genes
were inserted into yeast expression-secretion cassettes. Expres-
sion of END1, CBH1, and CEL1 was directed by the promoter
sequences derived from the ADH2, PGK1, and ADH1 genes,
respectively. In contrast, BGL1 was expressed under the control
of its native promoter. Secretion of End1p and Cel1p was directed
by the MF�1 signal sequence, whereas Cbh1p and Bgl1p were
secreted using their native leader peptides. The construction of a
fur1::ura3 S. cerevisiae strain allowed the autoselection of this
multicopy URA3-based plasmid in rich medium. S. cerevisiae
transformants secreting biologically active endo-�-1,4-glucanase,
cellobiohydrolase, cellodextrinase, and cellobiase were able to
hydrolyze various substrates including CMC, hydroxyethyl cellu-
lose, laminarin, barley glucan, cellobiose, polypectate, birchwood
xylan, and methyl-�-D-glucopyranoside.

In a later study the gene (cel) encoding the bifunctional
endo/exoglucanase of a Bacillus sp. (241) was coexpressed with
the �-glucosidase gene (bgl) of B. circulans (106). Using the �
sequences of the Ty1 retrotransposon as target sites for ho-
mologous recombination, the ADH1P-cel-PGK1T and ADH1P-
bgl-PGK1T gene constructs were inserted at approximately 44
sites into the chromosomes of S. cerevisiae (106). When this
�-integrated recombinant S. cerevisiae strain was used in simul-
taneous saccharification and fermentation, an ethanol concen-
tration of 2 wt% was obtained after 12 h from 50 g of micro-
crystalline cellulose per liter (107). Using this engineered
strain expressing multiple copies of the bacterial endo/exoglu-
canase and �-glucosidase genes, a significantly reduced
amount of commercial enzyme preparation was required dur-
ing the SSF-based conversion of microcrystalline cellulose into
ethanol.

Petersen et al. (531) took the concept of constructing a cellu-
lose-degrading yeast one step further by engineering an S. cerevi-
siae strain for the degradation of four polysaccharides, i.e., starch,
pectin, cellulose, and xylan (the main component of hemicellu-
lose). This engineered S. cerevisiae strain contained the L. konon-
enkoae �-amylase gene (LKA1), the E. chrysanthemi pectate lyase
gene (PEL5), the E. carotovora polygalacturonase gene (PEH1),
the B. fibrisolvens endo-�-1,4-D-glucanase gene (END1), the P.
chrysosporium cellobiohydrolase gene (CBH1), the S. cerevisiae
exo-�-1,3-D-glucanase gene (EXG1), the S. fibuligera cellobiase
gene (BGL1), and the A. niger endo-�-D-xylanase gene (XYN4)
(531). This strain was able to grow on starch, pectate, and cello-
biose, but the degradation of cellulose (Solka Floc and lichenan)
and xylan was insignificant.

Expression of cellobiohydrolases (CBHs) in S. cerevisiae has
been a particular focus of researchers in the field because of the
vital role such enzymes play in degrading crystalline cellulose.
Takada et al. (661) expressed the cbhI gene of A. aculeutus and
used the resulting protein in conjunction with additional cellu-
lases produced by S. cerevisiae to achieve up to 59% hydrolysis of
Avicel. Cho and Yoo (106) reported measurable filter paper ac-
tivity associated with production of an endo/exoglucanase origi-
nating from B. subtilis. Notwithstanding these notable studies,
hydrolysis of high-crystallinity cellulose with enzyme preparations
including CBHs produced by recombinant S. cerevisiae has not
been widely reported, and has proved more challenging than has

functional production of other classes of cellulase enzymes. Func-
tional CBH expression represents at present a bottleneck to CBP
organism development and to growth enablement (considered
below) on crystalline cellulose in particular. Further progress in
this area, including understanding the basis for both the successes
and difficulties encountered in work to date, is an important goal
for future research.

Another objective for current and future research on the
development of CBP S. cerevisiae strains is the improvement of
the secretory expression of the above-mentioned saccharolytic
enzymes. High-level secretion of heterologous proteins, or na-
tive proteins for that matter, is not as readily achieved in S.
cerevisiae as in some bacteria, fungi, or other yeast species (e.g.,
Pichia pastoris, Hansenula polymorpha, K. lactis, and Yarrowia
lipolytica). Notwithstanding obstacles such as hyperglycosyla-
tion and hindered secretion due to the cell wall, there is an
increasing number of examples of effective secretion of heter-
ologous proteins by S. cerevisiae. Native secretion sequences
have been found sufficient to effect proper posttranslational
processing and secretion of functional proteins in the case of
genes originating from fungal sources, including EgI, EgII, and
Xyn2 of T. reesei (367, 368, 521); XynC, XlnA, and Man1 of
Aspergillus (129, 398, 611); and a glucoamylase gene. In-frame
fusions to the yeast MF�1S secretion sequence have been used
to express in S. cerevisiae saccharolytic genes from bacteria,
including the end1 gene of B. fibrosolvens, the cel1 gene of R.
flavefaciens, the beg1 gene of B. subtilis, and the xlnD gene of A.
niger (367, 368, 701, 702, 703). Although these proteins were
often extensively glycosylated, they were still efficiently se-
creted through the yeast cell wall into the medium (367, 368).
Secretion of a mannanase (Man1) of A. aculeatus was recently
reported at levels corresponding to about 5% of cellular pro-
tein (611). Looking beyond saccharolytic enzymes, several mu-
tant strains with a “supersecreting” phenotype showing sub-
stantially increased secretion of particular proteins have been
isolated. For example, an ssc1 (pmr1) ssc2 double mutant se-
creted prochyomosin, bovine growth hormone, and scuPA at
levels 5- to 50-fold higher than did nonmutated controls. Spe-
cific manipulations involving both the leader sequence and
structural gene resulted in a substantial (up to 4.8-fold) impact
on levels of secretion of single-chain proinsulin-like molecules
into the culture supernatant (339).

In light of results such as these, we believe that it is reason-
able to pursue expression in S. cerevisiae of cellulase at levels
sufficient to enable growth on crystalline cellulose as required
for CBP. At the same time, we acknowledge that achieving
elevated secretion levels in this organism has to date often
been a hit-or-miss proposition without a strong mechanistic
basis. Integrated advancement of our fundamental under-
standing along with investigation of strategies to increase se-
cretion levels is likely to be a particularly fruitful direction for
future research in the context of organism development for
CBP.

(iii) Growth on nonnative substrates by virtue of heterolo-
gous expression of saccharolytic enzymes. Studies addressing
growth enablement in liquid medium by virtue of heterologous
expression of saccharolytic enzymes are listed in Table 14.
Data for �-linked substrates (starch) are included as well as
data for �-linked substrates (cellobiose, cellodextrins, and cel-
lulose) because the field is at present more advanced with
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respect to starch compared to cellulose and its derivatives.
Results from the single bacterial study targeting microbial uti-
lization of starch are encouraging since modest growth and
ethanol production from 40 g of starch per liter were achieved
under anaerobic conditions. Growth of S. cerevisiae on starch,
under aerobic conditions in most cases, has been demonstrated
in several studies (145, 474, 531, 646). In a significant break-
through, Birol et al. (57) reported the utilization of 100 g of
starch per liter with production of 44 g of ethanol per liter and
8 g of cells per liter. Although ethanol and cell yields on starch
were similar to those on glucose, the specific growth rate was
nearly 10-fold lower on starch.

With respect to �-linked substrates, growth of recombinant
S. cerevisiae on cellobiose (475, 531) and cellodextrins (107,

531) has been demonstrated. Anaerobic simultaneous sacchar-
ification and fermentation (SSF) of Avicel has also been in-
vestigated using an S. cerevisiae strain expressing endo/exo
glucanase and �-glucosidase originating from Bacillus species.
This strain produced filter paper activity under both aerobic
and anaerobic conditions but was not shown to grow or pro-
duce ethanol in the absence of added cellulase (106). Anaer-
obic SSF of Avicel using K. oxytoca strains SZ21 and SZ22
expressing celY and celZ endoglucanases (see “Enteric bacte-
ria” above) resulted in ethanol yields up to 22% higher than a
control that did not express heterologous cellulases. However,
no ethanol formation was observed in the absence of added
cellulase (778). In a subsequent study (781), K. oxytoca strain
SZ21 was shown to be capable of fermenting amorphous to

TABLE 14. Summary of studies aimed at growth and fermentation enablement in liquid medium by virtue of
heterologous expression of saccharolytic genes

Substrate and host Enzymes (genes) Substrate Growth or fermentationa Reference

�-Linked substrates
K. oxytoca �-Amylase from Bacillus

stearothermophilus, pullulanase from
Thermoanaerobium brockii

Starch (40 g/liter) Anaerobic fermentation, 15 g
of ethanol per liter and 1.4 g
of cells per liter

171

S. cerevisiae Glucoamylase (GA1) Soluble starch CO2 release comparable to
control with added amylase

302

�-Amylase (amyE), glucoamylase (glaA) Corn starch (10 g/liter) Final optical density of 2.0 145
�-Amylase (LKA1) Soluble starch (20 g/liter) Aerobic growth, final optical

density �1.5
646

Glucoamylase from Rhizopus oryzae Soluble starch (10 g/liter) Aerobic growth with some
ethanol production, final
optical density �0.9

476

Amylopullulanase (LKA1), pectate lyase
(PEL5), polygalacturonase (PEH1),
endo-�-1,4-glucanase (END1),
cellobiohydrolase (CBH1), exo-�-1,3-D-
glucanase (EXG1), cellobiase (BGL1),
and endo-�-D-xylanase (XYN4)

Starch Aerobic growth, cell number �
control

531

�-Amylase (amyE), glucoamylase (glaA) Soluble starch (100 g/liter) Anaerobic growth, 44 g of
ethanol per liter and 8 g of
cells per liter

57

�-Linked substrates
K. oxytoca Endoglucanases (celY and celZ) Avicel Anaerobic SSF with added

cellulase, ethanol yields up
to 22% more than control

778

Amorphous cellulose Cellulose fermentation without
added cellulase, ethanol
yields 58–76% theoretical

781

S. cerevisiae CMCase, �-glucosidase from Aspergillus
aculeatus

Cellobiose (10 g/liter) Aerobic growth, final optical
density �1.5

476

CMCase, �-glucosidase from Aspergillus
aculeatus

Cellodextrins Aerobic growth, cell number �
control

476

Amylopullulanase (LKA1), pectate lyase
(PEL5), polygalacturonase (PEH1),
endo-�-1,4-glucanase (END1),
cellobiohydrolase (CBH1), exo-�-1,3-D-
glucanase (EXG1), cellobiase (BGL1),
and endo-�-D-xylanase (XYN4)

Cellobiose Aerobic growth, cell number �
control

531

Endo/exoglucanse from Bacillus sp. strain
DO4, �-glucosidase genes from
Bacillus circulans

Cellodextrins Growth, 2-fold higher cell mass
and greater ethanol
production compared to
control

107

Endo/exoglucanse from Bacillus sp. strain
DO4, �-glucosidase genes from
Bacillus circulans

Avicel Anaerobic SSF, showed
substantial enzyme
production under aerobic
and anaerobic conditions

106

a “Control” refers to a strain not expressing heterologous saccharolytic enzymes.
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cellulose to ethanol at yields 58 to 75% of theoretical in the
absence of added cellulase. This represents the most advanced
embodiment of cellulose processing via CBP by virtue of het-
erologous expression of saccharolytic enzymes.

As a result of a relatively small number of studies, all but one
of which were conducted since 1995, significant progress has
been made in the area of utilization of nonnative substrates by
virtue of heterologous expression of saccharolytic enzymes. In
the case of starch, the results of Birol et al. (57) are encour-
aging not only with respect to the feasibility of starch utiliza-
tion, but also the with respect to the overall feasibility of
enabling utilization of nonnative substrates. Increased rates of
growth and hydrolysis as well as use of insoluble substrates
would appear to be logical objectives for future work on starch
utilization. Work aimed at microbial utilization of �-linked
substrates has been undertaken more recently than work
aimed at starch, with the first such studies appearing in 1998,
and is less advanced. Growth on cellobiose and cellodextrins
provides a point of departure that can be built upon in future
work. It is desirable to build upon such results by examining
benefits of endogenous cellulase production during SSF as well
as anaerobic growth in the absence of cellulase enzymes, per-
haps first on amorphous cellulose and then on crystalline cel-
lulose. Recent work involving both enteric bacteria (778, 781)
and yeast (106) represents significant first steps in this direc-
tion.

CONCLUDING DISCUSSION

Fundamentals

The last decade has seen marked advances in the depth and
breadth of scientific understanding with respect to the struc-
ture, function, and genetics associated with the components of
cellulase systems. Such advances include solving the 3-D struc-
tures of over two dozen cellulases, leading to a much better
understanding of reaction mechanisms; the availability of many
new protein sequences (300 in 1990, over 5,000 in 2001); mean-
ingful new classification schemes based on structural features;
and a better understanding of the regulation of cellulase genes,
especially in fungal systems. Significant progress has also been
made since 1990 with respect to understanding interactions
among cellulase components. This includes a better under-
standing of synergistic interactions for an increasing number of
noncomplexed cellulase systems, as well as a better and
broader understanding of the structure and composition of
cellulosomes. We expect that expanding knowledge of the mo-
lecular details of cellulose hydrolysis will continue at an accel-
erated pace during the coming decade. This expectation is
supported by the progress made in the last decade, the pow-
erful new tools that continue to become available, and the
talent and dedication with which a substantial cadre of scien-
tists is pursuing these issues.

Understanding cellulose hydrolysis as a microbial phenom-
enon builds on the foundation of knowledge pertaining to
cellulose hydrolysis at a subcellular level but encompasses ad-
ditional questions and lines of inquiry that are cellular in char-
acter. Such questions include those listed in Table 15.

The important body of work on microbial cellulose utiliza-
tion undertaken to date is implicit in the framing of questions

such as these and also gives hints to their answers. Still, inves-
tigation of the questions listed in Table 15 is in a nascent stage
of development for most organisms.

Important tools for understanding microbial cellulose utili-
zation have in many cases become available only recently or
have not yet been developed. Such tools include systems that
allow foreign genes to be expressed in cellulolytic microorgan-
isms, which are established for the aerobic T. reesei (520) but
not for most cellulolytic anaerobes. The recent development of
an electrotransformation system for C. cellulolyticum makes
possible new studies of microbial cellulose utilization using
homologous recombination-mediated gene knockout. Such
studies can be expected to yield exciting comparative results as
similar systems become available for more cellulolytic micro-
organisms that are not currently transformable. Methods to
independently quantify cells and cellulase can be expected to
result in a second set of new insights, particularly in the areas
of bioenergetics, metabolic control, and kinetics. New methods
are required to fractionate and characterize glycocalyces and
would be quite informative if developed. Continuous culture
on cellulosic substrates is just now beginning to be applied in
ways that give insights extending beyond summary description
of substrate conversion and product formation, and it can be
expected to yield rich insights in the coming years, especially
when coupled with new analytical methods. Studies in which
heterologous cellulase expression confers the ability to grow on
nonnative substrates have begun to appear only in the last few
years and represent an exciting frontier with the potential to
become an important tool for fundamentally oriented investi-
gations while also being relevant to applied goals (discussed
subsequently).

The substantial potential of quantitative analysis to con-
tribute to our understanding of cellulose hydrolysis at both
subcellular and cellular levels has been realized to date to a
very limited extent. In contexts such as specific activity of
cellulases (Table 5) and adsorption (Table 6), it is at present
often difficult to draw quantitative conclusions that extend
beyond the reach of a particular study. This limitation may
be addressed by paying more attention to methodological
standardization and by undertaking more interspecific com-
parative studies under controlled conditions. These mea-
sures can be expected to shed light on several fundamental
issues of considerable interest about which there is currently
substantial uncertainty, the relative efficacy of complexed
and noncomplexed cellulase systems being a case in point.
Quantitative studies at different levels of aggregation (e.g.,
subcellular, pure culture, defined mixed culture, and unde-
fined mixed culture) have great potential as a framework to
test and develop our understanding but have seldom been
undertaken.

Explanations for the features and molecular diversity of cel-
lulase enzyme systems are logically sought in an understanding
of the niches and adaptive strategies of the microorganisms in
which these systems evolved. Conversely, results of molecular
studies substantially enhance the depth and clarity with which
the adaptive strategies of cellulolytic microorganisms can be
understood. This potentially important complementarity can
be more fully exploited in the future as understanding of mi-
crobial cellulose utilization advances.
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Biotechnology

Several factors motivate the development of microorganisms
possessing the properties required for cost-effective implemen-
tation of CBP in an industrial setting. The primary savings
anticipated for CBP compared to other described process con-
figurations featuring enzymatic hydrolysis result from elimina-
tion of costs associated with a process step dedicated to cellu-
lase production. Other benefits which might be realized
include higher product yields, higher rates, and improved sta-
bility of cultures and strains. Realization of these benefits is,
however, by no means certain. Higher yields of fermentation
products might be achieved because of the absence of oxidative
metabolism in a CBP configuration. Higher rates might be
achieved because of (i) the availability of all of the feedstock
for cellulase production in CBP (compared to a small fraction
of feedstock in other process configurations), (ii) the possibility
of using high-specific-activity complexed cellulases in organ-
isms developed for CBP, and (iii) cell-cellulase synergy. Im-
proved culture stability may result for CBP as compared to

processes featuring dedicated cellulase production and fer-
mentation by noncellulolytic microbes because adherent cellu-
lolytic bacteria used for CBP can be expected to outcompete
many contaminants for products of cellulose hydrolysis. More-
over, selective pressure might maintain or improve high rates
of microbial cellulose utilization in a CBP configuration
whereas overproduction of cellulase in processes featuring
dedicated cellulase production has negative selective value. In
addition to its substantial cost reduction potential (see “Pro-
cess configurations” above), it should be appreciated that CBP
is in principle applicable to production of any fermentation
product from cellulosic biomass.

The feasibility of CBP will be fully established only when a
microorganism or microbial consortium is developed that sat-
isfies the requirements discussed above (see “Strategies”).
Short of such a definitive demonstration, analysis of the feasi-
bility of CBP may be approached by considering data for nat-
urally cellulolytic anaerobes or by using quantitative models.
Nearly 90% of the cellulose in pretreated hardwood is hydro-

TABLE 15. Questions inherent to understanding microbial cellulose utilization most appropriately pursued by studies at a cellular level

Physiological feature Question(s) relative to growth on cellulose

Uptake of cellulose hydrolysis products What is the distribution of oligoglucan chain lengths taken up by cellulolytic organisms?
What is the bioenergetic requirement for substrate transport?

Metabolic control What is the allocation of substrate carbon to cellulase and cell synthesis, how does this vary with
growth conditions, and can such observations be reconciled with our understanding of gene
expression at a subcellular level?

Bioenergetics What is the allocation of ATP to cellulase and cell synthesis, and how does this vary with growth
conditions?

What is the relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and/or
cellobiose, does this depend on growth conditions, and, if so, how is it regulated?

Can the rate of ATP production (e.g., due to phosphorolytic cleavage of oligomers, glycolysis, and
post-pyruvate metabolism) be quantitatively reconciled with the rate of ATP consumption (e.g.,
due to substrate transport, cell synthesis, cellulase synthesis, maintenance, energy spilling, and
perhaps other factors)?

Considering all factors—including but not necessarily limited to ATP available from cellobextrin
phosphorylation, ATP requirements for substrate transport, and the ATP required for cellulase
synthesis—is the ATP available for growth of a microorganism growing on cellulose less than
or greater than that available for growth of the same organism on soluble mono- or
disaccharides?

Cellulose-microbe adhesion and
glycocalyx formation

What are the roles and relative importance of glycocalyces, cellulosomes, and other factors in
microbial adhesion to cellulose, and how much does this vary among different cellulolytic
microorganisms?

What is the relative prevalence, origin (e.g., accretion or de novo synthesis), and bioenergetic cost
associated with synthesis and assembly of glycocalyx components?

What function is served by the “protuberances” observed to form between cellulose and some
cellulolytic microorganisms?

Rates of microbial cellulose hydrolysis
(pure cultures)

What are the comparative rates of cellulose hydrolysis by different microorganisms on both a cell-
and cellulase-specific basis, and what factors are responsible for observed differences?

What is the relative effectiveness of cellulase systems in cellulose-enzyme-microbe complexes
compared to cellulose-enzyme complexes?

If cellulase-microbe synergy can be demonstrated, what is its mechanistic basis?

Ecology and evolution What are the ecological strategies and niches of various cellulolytic organisms, including
interactions with other organisms, spatial relationship to the substrate (e.g., adhesion and
penetration of pores by filaments), and the physical environment?

Can ecological strategies and niches be reconciled with cellular and subcellular features of the
cellulolytic apparatus, and can the selective pressures leading to the evolution of such features
be understood?

In cases where cell-cell synergy can be demonstrated, what is its quantitative significance and
mechanistic basis?
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lyzed in 12 h by C. thermocellum grown in continuous culture at
low feed substrate concentrations (407). Values for first-order
rate constants for Avicel hydrolysis by cellulolytic anaerobes,
0.05 to 0.16 h�1 (Table 8), are consistent with reaction times of
44 to 14 h to achieve 90% cellulose hydrolysis. In light of these
results, it may be inferred that the modest ATP available from
anaerobic metabolism is sufficient to support the synthesis of
both cells and cellulase at levels resulting in rather high rates
of hydrolysis for highly crystalline cellulosic substrates. How-
ever, this has to date been demonstrated only at low substrate
concentrations. Organisms engineered not to produce acetic
acid, or which do not produce acetic acid naturally (e.g., Sac-
charomyces or Lactobacillus used as hosts for the recombinant
cellulolytic strategy), will have somewhat lower GATP values
than will naturally occurring cellulolytic anaerobes. Results
from a model incorporating fermentative ATP generation,
ATP expenditure for cellulase and cell synthesis, and cellulase
kinetics indicate that acceptably fast hydrolysis rates are rea-
sonable to expect with GATP � 2 ATP/mol (710). In particular,
if a cellulase specific activity equal to that of T. reesei is as-
sumed, then predicted reaction times are the same for CBP
and current SSF configurations. At cellulase specific activities
higher than that of T. reesei, predicted reaction times are
shorter for CBP.

Organism development milestones for the native cellulolytic
strategy are as follows. (i) Develop practical and reproducible
genetic systems permitting heterologous gene expression and
gene knockout in a variety of cellulolytic anaerobes. (ii) Un-
ambiguously identify the factor(s) limiting growth under the
conditions of interest, and establish that product tolerance is
sufficient in a process context. (iii) Demonstrate that high
product yields can be obtained in engineered strains. (iv) Dem-
onstrate high-rate conversion of concentrated feedstocks (e.g.,
�50 g of carbohydrate per liter) by high-yielding strains. (v)
Demonstrate that organisms can function adequately under
conditions typical of an industrial environment, including tol-
erance to any inhibitors generated during pretreatment.

Genetic system development (milestone i) has to date been
achieved only for C. cellulolyticum. The other milestones listed
have not been achieved for naturally cellulolytic anaerobes.
Successful realization of milestone i appears necessary to ob-
tain high product yields in engineered strains (milestone iii)
The feasibility of engineering high-yielding strains is supported
by both stoichiometric considerations and successful metabolic
engineering efforts involving similar end product metabolism
(see “Metabolic engineering” above). A departure point for
understanding product tolerance (milestone ii) is to determine
the extent to which inhibition by salts resulting from organic
acid production and addition of base for pH control is wide-
spread. If it can be shown that such salt inhibition is a general
explanation for the discrepancy between tolerance to ethanol
and the maximum concentration of ethanol produced, this
would have two important implications. First, the prospects for
using naturally cellulolytic organisms in industrial CBP pro-
cesses would be substantially improved. Second, It would be
necessary to develop high-yielding strains producing little or no
organic acids, and hence correspondingly low concentrations
of salts resulting from pH neutralization, before high-rate con-
version of concentrated feedstocks can be observed. That is,

milestone iii would have to be achieved before milestone iv
could be achieved.

Demonstrating that naturally cellulolytic organisms can
function adequately in industrial environments (milestone v) is
an important milestone that requires further study if it is to be
achieved. With respect to pretreatment-generated inhibitors in
particular, this milestone can be approached by identifying and
developing an organism that exhibits tolerance to the inhibitors
produced by a particular process or by identifying and devel-
oping a process that generates inhibitors that an organism can
tolerate, or a combination of these. Understanding the mech-
anism of inhibitory effects and taking full advantage of organ-
ism’s often considerable ability to evolve inhibitor resistance
(e.g., in continuous culture) are likely to be important in this
context.

Organism development milestones for the recombinant cel-
lulolytic strategy are as follows. (i) Demonstrate that growth on
noncrystalline cellulose is enabled and/or greater extents of
hydrolysis are achieved in SSF of crystalline cellulose relative
to a wild-type control. (ii) Demonstrate functional production
and secretion of a variety of exoglucanases. (iii) Demonstrate
an ability to grow on crystalline cellulose in the absence of
added cellulases. (iv) Optimize cellulase expression and secre-
tion based on a noncomplexed cellulase system to increase
growth rates. (v) Express one or preferably several complexed
cellulase systems (in different organisms) and compare their
effectiveness to that of noncomplexed systems. (vi) Evaluate
whether it is beneficial or necessary to incorporate additional
features of naturally occurring cellulolytic bacteria.

Milestone i has been achieved for enteric bacteria and to
some extent for S. cerevisiae (see “Growth on nonnative sub-
strates by virtue of heterologous expression of saccharolytic
enzymes” above). The other milestones listed have not been
achieved. Functional expression of exoglucanase enzymes
(milestone ii) has proved challenging in yeasts for reasons that
are still not clear (see “Expression of heterologous cellulase
genes in S. cerevisiae” above) and is very probably a prerequi-
site to demonstrating growth on crystalline cellulose in the
absence of added enzymes (milestone iii). First-generation
strains capable of such growth will probably grow quite slowly
and will therefore benefit from improvement and optimization
via a variety of approaches (milestone iv).

Anaerobic cellulolytic bacteria from nature meet the chal-
lenge of growth on a recalcitrant substrate and a very tight
ATP budget by a collection of features that extend beyond the
production of a functional cellulase system. These features
include high-specific-activity cellulases of the complexed type,
cell-substrate attachment, coupling of sugar phosphorylation
to hydrolysis of �-glucosidic bonds (to at least some extent),
glycocalyx formation, and (we think probably) energy-efficient
substrate transport. For microorganisms expressing a heterol-
ogous cellulase system to achieve rates of growth and cellulose
hydrolysis under anaerobic conditions, it may be advantageous
or necessary for them to exhibit some or all of these features.
Milestones v and vi reflect this perspective.

The two organism development strategies for CBP are as-
sociated with distinctive strengths and challenges. For the na-
tive cellulolytic strategy, organism development begins with
organisms having highly evolved cellulose enzyme systems and
metabolic features specific to cellulose that may be difficult to
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entirely replicate in an organism developed according to the
recombinant cellulolytic strategy. However, the recombinant
cellulolytic strategy begins with organisms having well-estab-
lished properties related to robustness in industrial environ-
ments that may be difficult to replicate in an organism devel-
oped according to the native cellulolytic strategy. Although
abstract arguments can be advanced about which strategy is
more promising, our view is that such arguments cannot be
conclusive on the basis of what we know today and that both
strategies have merit and should be pursued. In support of this
view, each strategy involves considerable uncertainties, differ-
ent strategies may prove most advantageous for different prod-
ucts, organism development based on both native and recom-
binant substrate utilization strategies has proven successful for
substrates other than cellulose (410), and the benefits of CBP
are large enough to merit a parallel approach.

An added reason to pursue both the native and recombinant
cellulolytic strategies is that each strategy has marked potential
to inform the other. The recombinant strategy is informed by
features of naturally cellulolytic bacteria specific to cellulose
utilization. In addition, hydrolysis rates exhibited by naturally
cellulolytic bacteria provide a performance standard for re-
combinant cellulolytic microbes. The native cellulolytic strat-
egy is informed in the course of recreating functional cellulase
systems one at a time pursuant to the recombinant cellulolytic
strategy. In addition, product yields and tolerance exhibited by
recombinant strategy host organisms—including S. cerevisiae,
E. coli, and potentially others—represent a performance stan-
dard for cellulolytic microorganisms with engineered end prod-
uct metabolism.

Both CBP organism development strategies involve very
large challenges that will probably require a substantial sus-
tained effort to overcome. However, the rewards for success in
this endeavor are correspondingly large.

Alternative Cellulose Hydrolysis Paradigms

The vast majority of studies investigating cellulose hydrolysis
and cellulase enzyme systems have proceeded within the con-
text of an enzymatically oriented intellectual paradigm. In
terms of fundamentals, this paradigm focuses on cellulose hy-
drolysis as primarily an enzymatic rather than microbial phe-
nomenon. In terms of applications, the enzymatic paradigm
anticipates processes featuring production of cellulase in a step
separate from that in which the cellulosic feedstock is hydro-
lyzed for the purpose of conversion to a desired product. This
paradigm is clearly manifested in statements accompanying the
early work of pioneers in the field. For example, Sternberg
(642) wrote in a 1976 statement attributed to Mandels and
Weber (425): “Thousands of microorganisms have the ability
to grow on cellulose. Although many of these grow quire rap-
idly only a few produce extracellular cellulases capable of con-
verting crystalline cellulose to glucose in vitro.” Reese and
Mandels (562) wrote in 1971: “The dream of cellulase inves-
tigators is to develop a commercially feasible process for con-
verting waste cellulose to glucose. The recent successful com-
mercial practice of enzymatically converting starch to glucose
gives new hope to this dream. The chief problem is obtaining
sufficiently active enzymes and highly reactive substrates so
that relatively high sugar concentrations can be obtained in a

reasonable time. The sugars produced can be used as a source
of glucose, they can be converted to protein, or to fat, by
feeding them to appropriate microorganisms. The sugars could
also be used for production of alcohol.”

In response to the needs of the enzymatic paradigm, re-
search focused primarily on microorganisms that actively se-
crete cellulases. Since higher levels of cellulase secretion are
observed in aerobic microorganisms than in anaerobes, it was
logical for studies inspired by the enzymatic paradigm to focus
on cellulase production using aerobes as well as their noncom-
plexed cellulase enzyme systems.

An alternative microbially oriented paradigm considers cel-
lulose hydrolysis as a microbial phenomenon and anticipates
processes in a CBP configuration featuring cellulase produc-
tion, cellulose hydrolysis, and fermentation in a single step.
This microbial paradigm naturally leads to an emphasis on
different fundamental issues, organisms, cellulase systems, and
applied milestones compared to those of the enzymatic para-
digm. Advancement of the microbial paradigm is fostered by
investigating microbes, as opposed to enzymes, that rapidly
hydrolyze cellulose. Issues associated with microbial cellulose
utilization (see, e.g., Table 15) are thus central components of
the body of fundamental knowledge underlying the microbial
paradigm, whereas such issues are more peripheral relative to
the enzymatic paradigm. It is logical in the context of the
microbial paradigm to focus on anaerobic microorganisms and
their distinctive complexed cellulase systems since the produc-
tion of desired reduced product(s) is a required feature of
processes configured according to the CBP concept. Thus,
while T. reesei is exceptionally well suited to the needs of
processes based on the enzymatic paradigm, it is ill suited with
respect to the needs of the microbial paradigm in light of its
unremarkable cellulose hydrolysis rates (see “Kinetics of mi-
crobial cellulose utilization” above) and production of water
and CO2 as metabolic products. Applied milestones associated
with advancing CBP by either the native or recombinant cel-
lulolytic strategies (see above) have little overlap with mile-
stones for the enzymatic paradigm.

A focus on the enzymatic paradigm was responsive to the
tools available when pursuant studies were initiated nearly a
half century ago. At that time, an industrial process could be
imagined based on hydrolysis using cellulases recovered from
an actively secreting organism such as T. reesei followed by
high-yield fermentation of the resulting sugars to desired prod-
ucts by using available microorganisms such as yeast or lactic
acid bacteria. By contrast, the development of microorganisms
for CBP via strategies such as metabolic engineering of end
product formation in naturally cellulolytic anaerobes or heter-
ologous expression of cellulase enzymes could not have been
imagined.

Today, biotechnology is central to progress toward applied
objectives within the context of both the microbial and enzy-
matic cellulose hydrolysis paradigms. For the microbial para-
digm, achieving the organism development milestones we fore-
see pursuant to both the native and recombinant cellulolytic
strategies (see above) will be based to a very large extent on the
successful application of biotechnological tools. For the enzy-
matic paradigm, cellulases with higher specific activity than
current commercial preparations are highly desirable and are
likely to be required (614). Developing such cellulases can be
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approached either by using new heterologous expression sys-
tems for cellulases that naturally have high specific activity or
by using protein engineering to create new, improved enzyme
systems. Notwithstanding the substantial differences between
the microbial and enzymatic paradigms outlined in the preced-
ing paragraphs, it is possible that results from work undertaken
within both these paradigms may be incorporated into ad-
vanced technology in a convergent manner. For example, high-
specific-activity cellulases could in principle be incorporated
into CBP-enabling microorganisms.

In the decades since commercially feasible cellulose conver-
sion processes featuring enzymatic hydrolysis were first envi-
sioned by Reese, Mandels, and other pioneers in the field,
sustainable resource supply, energy security, and global climate
change have emerged as dominant issues affecting the well-
being of humankind. The motivation for realizing this vision
has thus increased substantially even as the magnitude of the
challenges involved has become more apparent. In spite of the
great effort that has been devoted to the field, there exist today
biotechnological approaches to developing practical processes
for the conversion of cellulose to fuels and commodity chem-
icals that are both promising and relatively unexplored. An
important subset of such approaches involves microbial cellu-
lose utilization.
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ERRATUM

Microbial Cellulose Utilization: Fundamentals and Biotechnology
Lee R. Lynd, Paul J. Weimer, Willem H. van Zyl, and Isak S. Pretorius

Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences,
Dartmouth College, Hanover, New Hampshire 03755; USDA Agricultural Research Service, U.S. Dairy

Forage Research Center and Department of Bacteriology, Madison, Wisconsin, 53706;
and Department of Microbiology and Institute for Wine Biotechnology, University

of Stellenbosch, Stellenbosch 7600, South Africa

Volume 66, no. 3, p. 506–577, 2002. Page 507, column 1, line 14: “fuels and materials” should read “organic fuels and materials.”
Page 529, Table 4, line 10: “smithiti” should read “smithii.”
Page 530, column 2, line 5 from bottom: reference 651 should be deleted.
Page 531, Table 5, Binding affinity: for CenA BMCC, “41” and “1.89” should read “8.6” and “0.40,” respectively; for Cex BMCC,

“33” and “1.71” should read “6.44” and “0.33,” respectively.
Page 537, line 10 from bottom: “n/(n � 1)” should read “(n �1)/n.”
Page 542, column 2, line 19 from bottom, “scale of availability feedstock” should read “scale of feedstock availability.”
Page 546, column 2, line 10: “involves naturally occurring cellulolytic microorganisms” should read “involves engineering

naturally occurring cellulolytic microorganisms.”
Page 547, column 2, line 5 from bottom: “cellulolytic” should read “noncellulolytic.”
Page 563, column 1, line 30 from top: “Konigs” should read “Konings.”
Page 565, reference 131: “Dale, B. E.” should read “Dale, B. E., and C. J. Arntzen (ed.).”
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