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a drastic effect on substrate binding and activity of the resultant
mutant proteins (32). Based on mutant analysis, N123 was
ascribed a role in the catalytic steps that follow the enolization
of substrate RuBP. It is replaced by E119 in the C. tepidum
RLP and K98 in YkrW. E119 in C. tepidum RLP still seems to

have the ability to form hydrogen bonds with the backbone of
the substrate (Fig. 10). As discussed above, K98 in YkrW is
thought to abstract protons and serve as the general base (33).
K177 of form I RubisCO appears to participate in catalysis by
controlling the pKa of K175, which acts as both a proton

FIG. 13. Structural alignment of representative sequences from RLPs and RubisCO large subunits. Superimposition of the X-ray crystal
structures of C. tepidum RLP (PDB accession number 1YKW; form IV), spinach RubisCO (accession number 8RUC; form I), T. kodakarensis
RubisCO (accession number 1GEH; form III), and R. rubrum RubisCO (accession number 5RUB; form II) was used to deduce the alignment of
secondary structural elements (helices as bars and �-strands as arrows). Residue numbers are indicated on each side of the sequences. Conserved
active-site residues are marked with an “*” below the sequences. RubisCO large-subunit sequences are boxed in gray. Residues that are identical
or similar to those in other species are colored uniquely based on the nature of the residue. The catalytic loop 6, �-hairpin (both present in
RubisCO enzymes), and loop CD (present only in RLPs) are indicated. A. vinosum, Allochromatium vinosum; C. limicola, Chlorobium limicola; O.
granulosus, Oceanicola granulosus; P. horikoshii, Pyrococcus horikoshii; T. denitrificans, Thiobacillus denitrificans.
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acceptor and donor at two different steps in the catalytic mech-
anism (13). K177 is replaced by N174 in C. tepidum RLP and
V152/M149 in YkrW, with the side chains of these residues
being more distant from the substrate binding site. K334 of
form I RubisCO is at the apex of flexible loop 6 that folds over
the active site and controls the CO2/O2 specificity of RubisCO.
Dynamically, loop 6 of RubisCO, which is in an open confor-
mation, is thought to close upon substrate binding, bringing
K334 closer to the substrate and thus forming a hydrogen bond
with the incoming carboxyl group during carboxylation of
RuBP (20). Because of the importance of K334 in the catalytic
mechanism, loop 6 has been extensively studied with various
approaches. Amino acid substitutions/modifications at K334 or
at any of the residues in the vicinity appear to have drastic
effects on catalysis (66). As noted above, K334 is analogous to
R327 of the C. tepidum RLP and S305 of YkrW (33, 39). A
K334R substitution in R. rubrum RubisCO led to a complete
loss of activity, suggesting the criticality of the chemical nature
of this residue for RubisCO function (64). Thus, the analogous
R327, whose side chains appear in two different conformations
in C. tepidum RLP and R. palustris RLP2 (Fig. 10), and other
residues in the vicinity may play a crucial role in the catalytic
reaction mechanism(s) of various RLPs.

Comparison of Secondary Structural Elements Unique to
RLP and RubisCO: Possible Implications for RLP

Structure-Function Relationships

As noted above, sequence and structural alignments of the
three bona fide forms of RubisCO with the form IV RLPs (Fig.
12 and 13) indicate that there are at least two regions in the
secondary structure of RLPs that differ from the bona fide
RubisCO enzymes. A loop comprised of at least five or more
residues connecting �-sheets C and D (loop CD) appears to be
absent in the structures of RubisCO (Fig. 12). Loop CD is
comprised of residues Q78 to I91 in C. tepidum RLP. These
residues are involved in multiple interactions close to the ac-
tive site (Fig. 14) and hence may be critical for the function of
RLP in vivo. In the structure of YkrW, loop CD becomes a
helix and forms a stronger interaction interface with the other
monomer of the dimer. Such interactions are unique to RLP/

YkrW structures, and hence, variations in the lengths and
residue identities of loop CD may confer differences in prop-
erties among various RLPs (Fig. 12). The analogous regions in
plant and algal form I RubisCO enzymes are involved with
interactions with a class of proteins known as RubisCO ac-
tivases (49). RubisCO activase is a member of the family of
AAA� proteins (ATPases associated with a variety of cellular
activities) characterized by chaperonin-like functions. Ac-
tivases interact with RubisCO in an ATP-dependent manner to
release tight-binding sugar phosphates from the active sites
prior to catalysis. They are found in all plants and green algae,
and an activase-like gene has also been identified in filamen-
tous cyanobacteria (Anabaena and related species) (40). Draw-
ing a parallel, one may argue that the CD loops in RLPs could

FIG. 14. Comparison of the unique loop CD of C. tepidum RLP (PDB accession number 1YKW) (A) with the comparable region of form I
(spinach) RubisCO (accession number 8RUC) (B). Residues Q78 to I91 form a loop (loop CD) (red ribbon and sticks), and residues in this loop
have multiple interactions with residues of the same subunit (green ribbon and sticks) or the neighboring large subunit (purple ribbon and sticks).
Notably, the hydroxyl group of S86 forms a hydrogen bond with loop 6 residue R327 (orange sticks) from the neighboring large subunit. Spinach
form I residues equivalent to E75, E77, and H92 of C. tepidum RLP are E93, E94, and N95 (red ribbon and sticks). Residues K305 and V475
(yellow sticks) interact with E93 in the closed conformation of spinach RubisCO.

FIG. 15. Placement of the �-hairpin residues in the holoenzyme
structure of form I (spinach) RubisCO (PDB accession number
8RUC). The �-hairpin residues (Y353 to S367) (red) that are absent in
RLPs are exposed to the solvent in the holoenzyme structure of spin-
ach RubisCO. The large subunits are yellow, and the small subunits are
blue.
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potentially act as a regulatory structural element gating the
active sites.

The second structural region that demarcates RLPs from the
three forms of RubisCO is a �-hairpin structure that appears
to be juxtaposed by the N-terminal domain on one side and the
C-terminal domain on the other side in all three forms of bona
fide authentic RubisCO enzymes (Fig. 15). The strategic place-
ment of these elements in RubisCO indicates that this second-
ary structural element may mediate conformational changes
and maintain the relative positions of the N- and C-terminal
domains. Although none of the residues in this region appear
to be involved in critical interactions with the active site of
RubisCO, the side chains of most of these residues are polar in
nature and are solvent exposed in the holoenzyme (Fig. 15).
The absence of �-hairpin structures in RLPs may account for
the differences in structural stabilities between bona fide
RubisCO enzymes and RLPs. Although the C. tepidum RLP
functions as a dimer, the T. kodakarensis form III RubisCO
(decamer or pentamer of dimers) and the spinach form I
RubisCO (L8S8 hexadecamer) appear to be more closely re-
lated to the C. tepidum RLP than the dimeric R. rubrum form
II RubisCO based on structural analyses (39). Attempts to
decipher the functional relationships in RLPs via genetic en-
gineering strategies targeting individual amino acid residues as
well as secondary structural elements must also consider the
implications of such changes on the gross alteration of the
holoenzyme structure. A combination of tools such as DNA
shuffling, random mutagenesis, and bioselection may be ex-
ploited to delineate the physiological role of RLPs.

CONCLUSIONS AND OUTLOOK

About 30 years have passed since it was discovered that
microbes synthesize RubisCO molecules that differ from the
typical plant paradigm. Clearly, three separate bona fide forms
of RubisCO (forms I, II, and III) have now been described,
each of which catalyzes the carboxylation or oxygenation of
RuBP, albeit for potentially different physiological purposes.
Moreover, a fourth class, the RLPs, or form IV proteins, is
clearly structurally related to bona fide RubisCO, yet the RLPs
do not function as RubisCO enzymes, but thus far, they all
seem to catalyze reactions involved in sulfur metabolism. How-
ever, RubisCO and some RLPs do possess functional similar-
ities in that both proteins catalyze reactions using analogous
substrates in both cases via an initial enolization-type reaction.
The great preponderance of RLP sequences now available has
further shown that there are, at present, six different clades of
RLPs, some of which appear to possess different physiological
roles. Indeed, RubisCO and RLP molecules have now been
described for each of the three recognized types of living or-
ganisms, and the huge number of sequences now available has
allowed a coherent picture of the likely evolutional events that
took place to account for the different classes of RubisCOs and
RLPs to emerge. Our analyses are compatible with an archaeal
origin of both RubisCO and RLP, with form III proteins from
the Methanomicrobia being the likely precursors for all modern
RubisCO and RLP lineages. Certainly, as additional informa-
tion becomes available, we and others will build upon and/or
challenge this hypothesis. However, at this time, no other evo-
lutional scheme is compatible with the data. Finally, structural

and functional studies of RubisCO and RLP will continue to
provide information as to how the active sites of these proteins
have become adapted for their specific functions.
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