




FIG 8 Trimeric structure of the sheddase DegS. (A) Side view of DegS. (B) View from the periplasmic side. The protease domains in the center surround a
funnel-like exposed surface where the proteolytic sites are located (outlined by a black dotted line). The PDZ domains that contain the peptide-binding grooves
(gray shaded areas in panel B) are located on the outside of the DegS trimer. They are connected to the protease domains at their C termini. A peptide that is bound
to the PDZ domain in one of the subunits is colored red. The structure data were obtained from PDB accession number 1SOZ, and JMol was used to generate the
images. (C) Monomer structures of DegS in the peptide-free inactive (left), intermediate (middle), and peptide-bound active (right) states. The L1, L2, L3, and
LD loops are highlighted in violet. In the intermediate form, without a substrate, L3 retreats from the substrate docking position (active form) to the inactive
conformation, while L1, L2, and LD, located at the active site center, still adopt the active conformation. The active sites are shown in enlarged insets for all
structures. The catalytic residues Ser201, His96, and Asp126 are shown in black. Residues forming the S1 pocket are shown in orange. These residues are
reorganized upon substrate binding (compare the inactive and active forms). N94 (yellow) and H198 (green), which interfere with the catalytic triad and
destabilize the oxyanion hole, as shown in the inactive form, move away in the active form. The stress signaling peptide binding site in the PDZ domain for DegS
in the proteolytic active state is also shown in an enlarged inset. The peptide is colored red, and residues forming the hydrophobic pocket surrounding the Phe0
position are colored blue. Structure data were obtained from PDB, using accession numbers 1SOT (inactive state), 1VCW (intermediate state), and 1SOZ (active
state). JMol was used to construct the images.
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karyotes (38). One of the few characterized proteases of this family
is the CaaX protease Rce1p of S. cerevisiae, which removes the
C-terminal AAX residues from a prenylated protein following the
initial prenylation of the cysteine residue in the CAAX motif (18,
33, 115, 133). To date, neither the catalytic mechanism of PrsW
nor that of Rce1p has been investigated, but based on sequence
similarities, it has been proposed that these enzymes may be met-
alloproteases (18, 33, 38, 53, 55, 115, 133).

EUKARYOTIC PROTEASES THAT CATALYZE INTRA- AND
JUXTAMEMBRANE PROTEOLYSIS

For a broader understanding of all mechanisms of proteolysis that
potentially occur within the bacterial cytoplasmic membrane or at
its surface, it is instructive to compare the mechanisms of sub-
strate cleavage by signal peptidases and signal peptide hydrolases
with those of the eukaryotic presenilin protease and sheddases, all
of which also cleave within the membrane or at the membrane
boundaries. Please refer to references 24 and 45 for detailed recent
reviews and discussions on the eukaryotic S2P and rhomboid pro-
teases.

Presenilin Protease

The presenilins function in Notch signaling and cell adhesion and
have also been implicated in Alzheimer’s disease. These proteases
belong to the same family of aspartic acid proteases as the eukary-
otic SPPs (135, 191). �-Secretase and presenilin 1, the catalytic
component of the multisubunit enzyme �-secretase, cleave the
�-amyloid precursor protein to excise A� peptides of various
lengths that can form neuritic plaque. Similar to the SPP pro-
teases, presenilin 1 cleaves within the transmembrane region of
substrates such as the �-amyloid precursor protein. Presenilins
are synthesized with nine transmembrane segments (85), but un-
like SPP family members, they undergo cleavage during activation
that results in an N-terminal fragment with six transmembrane
segments and a C-terminal fragment with three transmembrane
segments (Fig. 7, top panel). Notably, the transmembrane do-
mains containing the catalytic Asp residues in presenilin have the
opposite orientation to the transmembrane domains containing
the catalytic Asp residues in SPP (Fig. 4) (109, 183). The different
orientations correlate with the opposite orientations of the trans-
membrane substrates of these proteases for cleavage. The SPP pro-
tease cleaves single-pass membrane substrates with a type II ori-
entation (i.e., with the N terminus in the cytoplasm), while
presenilin cleaves substrates with type I membrane topology (i.e.,
with the C terminus in the cytoplasm) (100). Another difference is
that presenilin is not active unless the other subunits, i.e., nicas-
trin, Aph-1, and Pen-2, are present, while SPP appears to be active
by itself (77, 183). The Pen-2 subunit within �-secretase is re-
quired to stabilize the presenilin fragment heterodimer for prese-
nilin cleavage (119). Nicastrin is important for both the stability
and trafficking of the other components of the presenilin 1–�-
secretase complex (197). In terms of activity, mutations of the
invariant Asp residues within presenilin 1 completely eliminate
�-secretase activity in eukaryotic cells, supporting the view that
presenilin 1 is the catalytic component. Although many substrates
have a valine at the P1= position, which can be important for
processing, presenilin is quite tolerant to mutation of cleavage site
residues (11).

Sheddases

Eukaryotic sheddases typically cleave their substrates at the jux-
tamembrane region outside the lipid bilayer. These enzymes func-
tion in the liberation (shedding) of ectodomains from membrane
proteins. By analogy, signal peptidases of the SPI type could thus
be regarded as a special class of sheddases dedicated to protein
secretion. Substrate cleavage by sheddases is often regulated such
that it occurs only at certain times or at particular locations in the
cell. The eukaryotic sheddases, which are extramembrane pro-
teases tethered to the membrane, use active site residues found in
the “standard” proteases, such as the aspartic acid proteases or
metalloproteases.

BACE. The BACE (�-secretase) family of proteases (48) forms a
prominent class of sheddases. BACE proteases are membrane-
anchored aspartic acid proteases that have been implicated in Alz-
heimer’s disease (176). BACE1 cleaves the amyloid protein pre-
cursor 27 residues from the membrane surface (157) and is also
involved in shedding of the type III neuregulin 1 protein that is
important in nerve myelination (60, 190). BACE is composed of
one transmembrane domain and a protease domain facing the
extracellular space (Fig. 9A). The structure of the protease domain
of human BACE has been solved at 2.0-Å resolution (58). While
the exact positioning of the protease domain with respect to the
membrane is not known, it is believed that BACE can cleave sub-
strates directly at the extracellular membrane surface, where the
substrate cleavage site is accessible.

ADAM. Another important class of sheddases is the ADAM (a
disintegrin and metalloprotease) group of proteases (192). These
sheddases are metalloproteases that cleave a number of mem-
brane-anchored substrates for release into the extracellular space
(Fig. 9B). ADAM8 and ADAM10 have been implicated in inflam-
mation, cell adhesion, and neurodegeneration (92). These pro-
teases can cleave CD23, myelin basic protein, and tumor necrosis
factor alpha (107, 186). Similarly, ADAM17 (also known as TACE
or tumor necrosis factor alpha-converting enzyme) is capable of
processing interleukin-1 receptor type II, Kit ligand, L-selectin,
transforming growth factor alpha, tumor necrosis factor alpha,
and tumor necrosis factor receptors 1 and 2 (107). The structure
of the protease domain of ADAM17 has been solved by X-ray
crystallography (102). Exactly how ADAM proteases cleave at the
membrane surface is currently not understood. One possibility is
that these enzymes have a preference for cleavage in their sub-
strates’ unstructured regions proximal to the membrane surface.

CONCLUSIONS

After decades of research on membrane proteases in the bacterial
protein secretion/quality control area, it has become very clear
that no single mechanism is used to cleave substrates at the intra-
and juxtamembrane positions. SPI cleaves a preprotein substrate
during or after membrane translocation, and its catalytic domain
penetrates the lipid phase of the membrane. This allows it to bind
the substrate and then cleave it in a water-exposed environment at
the extracytoplasmic surface of the membrane. Signal peptide
degradation by SPP or RseP is thought to occur within the plane of
the membrane. In the cases where the structures of intramem-
brane proteases are known, it is clear that the active sites employ
standard catalytic residues that are embedded within the mem-
brane and contain an aqueous channel where the hydrolytic reac-
tion occurs. In contrast, the membrane protease FtsH extracts its
substrates from the membrane and degrades them in the aqueous
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milieu of the cytoplasm. Similarly, SPPA and DegS degrade their
substrates in the aqueous extracytoplasmic milieu. In all cases,
whether proteolysis occurs outside or within the membrane, the
active sites of the proteases use standard catalytic residues and,
where needed, aqueous channels.

While much progress has been made in understanding bacte-
rial proteases that cleave within the cytoplasmic membrane and at
the membrane surface, there are still many questions that remain
to be investigated. How substrates precisely access the active sites

of intramembrane proteases is not understood. Also, it is still
somewhat controversial whether there is a lateral gating mecha-
nism that controls access of the substrate to the active site of in-
tramembrane proteases from the lipid bilayer. What are the struc-
tural features of the substrate that allow it to be cleaved by one
specific intramembrane protease but not by another protease?
What are the characteristics of membrane substrates that allow for
cleavage only at the proximal surface, such as by signal peptidases
of the SPI and SPII types? To answer such questions, it will be

FIG 9 The sheddases BACE and ADAM17 cleave substrates at the extracellular membrane surface. Sheddases belonging to the BACE (A) and ADAM (B) families
cleave membrane proteins at aqueous juxtamembrane positions. This results in the release of ectodomains from the substrate proteins into the extracellular
space. The catalytic domains of both BACE (PDB accession number 1W50) and ADAM (PDB accession number 1BKC) are shown with zoomed-in views of the
active site regions. JMol was used to generate the 3D structure images.
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necessary to perform further in-depth biochemical studies and to
solve the structures of membrane proteases with their bound sub-
strates. Lastly, studies in B. subtilis suggest that membrane pro-
teases can set a limit to the overproduction of membrane proteins
needed for structural analyses or biomedical and biotechnological
applications (19, 199). Given the very important functions of
membrane proteases in bacterial growth and cell viability, further
research is needed to determine how the bacterial network of
membrane proteases can best be modified to achieve maximal
production of valuable membrane proteins with minimal detri-
mental side effects on the overproducing host cells.
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