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SUMMARY

Many studies report the high prevalence of multiply drug-resistant
(MDR) strains. Because MDR infections are often significantly
harder and more expensive to treat, they represent a growing public
health threat. However, for different pathogens, different underlying
mechanisms are traditionally used to explain these observations, and
it is unclear whether each bacterial taxon has its own mechanism(s)
for multidrug resistance or whether there are common mechanisms
between distantly related pathogens. In this review, we provide a sys-
tematic overview of the causes of the excess of MDR infections and
define testable predictions made by each hypothetical mechanism,
including experimental, epidemiological, population genomic, and
other tests of these hypotheses. Better understanding the cause(s) of
the excess of MDR is the first step to rational design of more effective
interventions to prevent the origin and/or proliferation of MDR.

INTRODUCTION

Bacterial pathogens that are resistant to multiple drugs repre-
sent a growing public health threat, because multiply drug-

resistant (MDR) infections are challenging and expensive to treat
(1–3), and few antimicrobial compounds, and still fewer antimi-
crobial agents using novel mechanisms of action, are in clinical
development (4). Using both published and unpublished data (5–
8), we show that there is often a positive correlation within a
bacterial population between resistance to one drug and resistance
to one or more other drugs. The high frequency of MDR isolates
among resistant strains represents a scientific puzzle: why do re-
sistance determinants aggregate in certain strains of bacteria?

Different underlying mechanisms are traditionally used to ex-
plain these observations in different pathogens and are rarely crit-
ically assessed or tested. It is unclear whether each bacterial taxon
has its own mechanism(s) or to what extent the pathways to the
accumulation of multiple resistances are shared among patho-
gens. Understanding the causes of MDR is necessary for con-
structing appropriate models to aid in the design and evaluation of
potential interventions.

Here we describe the scope of the phenomenon of MDR in
bacteria and enumerate possible mechanisms for the appearance
and proliferation of MDR bacteria. Importantly, we also propose
experimental, epidemiological, population genomic, and other
study designs that can help to clarify the roles of these potential
mechanisms driving excess MDR.

THE EXCESS OF MDR IN BACTERIA

For many bacterial pathogens, the frequency of MDR pathogens ex-
ceeds the product of the frequencies of individual resistance traits.
While this phenomenon of excess MDR has rarely been the focus of

epidemiological studies, those studies which report the relevant data
very often find positive correlations between resistance phenotypes:
isolates resistant to one drug are more likely to be resistant to others.
Below we briefly review such findings for a range of pathogens, in-
cluding novel analyses performed for this report.

Streptococcus pneumoniae

McCormick et al. (9) and Link-Gelles et al. (8) studied invasive
pneumococcal disease isolates from population-based surveil-
lance in different eras and reported that dual resistance to penicil-
lin and erythromycin is more common than the product of the
proportions of resistance to penicillin and erythromycin in the
United States. We have expanded their analysis, using the same
data set from three epidemiologically distinct periods. We find
significant positive correlations between resistance to drugs,
including penicillin, erythromycin, tetracycline, clindamycin,
trimethoprim-sulfamethoxazole, ceftazidime, and levofloxa-
cin (Table 1).

Enterobacteriaceae

In the United Kingdom, sulfonamide-resistant strains of Esch-
erichia coli were more likely to have resistance to antibiotics, in-
cluding ampicillin, chloramphenicol, kanamycin, streptomycin,
tetracycline, and trimethoprim, than sulfonamide-susceptible
strains in both in 1991 and 1999 (6). The proportion of sulfon-
amide-resistant strains that were resistant to at least two other
antibiotics of different chemical classes was also higher than that
of sulfonamide-susceptible strains (sulfonamide resistant versus
sulfonamide susceptible, 88.1% versus 17.8% in 1991 and 83.0%
versus 28.4% in 1999) (6). In the United States, there was a signif-
icant association between resistance to fluoroquinolones and plas-
mid-mediated gentamicin resistance (10). Using data from a ter-
tiary care hospital in the United States, we found that most
correlation coefficients of resistance to different drugs used to
treat Klebsiella pneumoniae, E. coli, and Pseudomonas aeruginosa
infections are significantly positive (Tables 2 to 4).

Neisseria gonorrhoeae

Fluoroquinolone resistance is associated with resistance to peni-
cillin and tetracycline in N. gonorrhoeae in the United States dur-
ing 2002 to 2007 (7). Ota et al. (11) also reported that in Ontario,
Canada, in 2006, fluoroquinolone-resistant strains were more
likely to be resistant to penicillin, tetracycline, and erythromycin
than fluoroquinolone-sensitive strains (fluoroquinolone-resis-
tant versus fluoroquinolone-sensitive, 98.4% versus 89.4% for
penicillin, 98.0% versus 81.1% for tetracycline, and 66.2% versus
14.8% for erythromycin). We found that resistance to penicillin,
tetracycline, and fluoroquinolones are positively correlated in the
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United States, using data from CDC’s Gonococcal Isolate Surveil-
lance Project (GISP) 2011 Annual Report (12) (correlation coef-
ficients of 0.371, 0.416, and 0.452 for penicillin and tetracycline,
penicillin and ciprofloxacin, and tetracycline and ciprofloxacin,
respectively [P values could not be calculated due to the lack of
sample size information]).

Mycobacterium tuberculosis

We calculated the correlation coefficients of resistance to different
drugs used to treat tuberculosis (TB) by using the data from 114
countries in Anti-Tuberculosis Drug Resistance in the World:

Fourth Global Report (13, 14). We found strong positive correla-
tions between resistance to isoniazid, rifampin, ethambutol, and
streptomycin (Table 5).

Staphylococcus aureus

We found positive correlations between resistance to antibiotics
used to treat S. aureus infection, including penicillin, erythromy-
cin, clindamycin, tetracycline, levofloxacin, gentamicin, and tri-
methoprim, using data from a tertiary care hospital in the United
States (Table 6). The significant positive correlations between re-
sistance to drugs used to treat S. aureus infection were also iden-

TABLE 1 Correlation coefficients of resistance to different drugs used to treat Streptococcus pneumoniae infections in the United Statesa

Period (n) Drug

Correlation coefficentb

ERY TET CLI SXT TAX CAZ LVX

Pre-PCV7 (7,571) PEN 0.610*** 0.370*** 0.266*** 0.700*** 0.454*** 0.037**
ERY 0.427*** 0.399*** 0.574*** 0.311*** 0.015
TET 0.574*** 0.338*** 0.173*** 0.009
CLI 0.229*** 0.078*** 0.037**
SXT 0.397*** 0.029*
TAX 0.021

Intermediate PCV7 coverage (16,735) PEN 0.613*** 0.359*** 0.288*** 0.626*** 0.437*** 0.299*** 0.026***
ERY 0.427*** 0.440*** 0.559*** 0.369*** 0.291*** 0.045***
�-TET 0.668*** 0.321*** 0.230*** 0.291*** 0.052***
CLI 0.234*** 0.198*** 0.301*** 0.040***
SXT 0.389*** 0.277*** 0.035***
TAX 0.727*** 0.026***
CAZ �0.011

High PCV7 coverage (6,785) PEN 0.579*** 0.460*** 0.422*** 0.576*** 0.440*** 0.326*** 0.030*
ERY 0.565*** 0.577*** 0.588*** 0.443*** 0.338*** 0.049***
TET 0.819*** 0.399*** 0.516*** 0.415*** 0.026*
CLI 0.343*** 0.516*** 0.393*** 0.035**
SXT 0.454*** 0.336*** 0.045***
TAX 0.727*** 0.014
CAZ 0.019

a PCV7, 7-valent pneumococcal conjugate vaccine; PEN, penicillin; ERY, erythromycin; TET, tetracycline; CLI, clindamycin; SXT, trimethoprim-sulfamethoxazole; TAX,
cefotaxime; CAZ, ceftazidime; LVX, levofloxacin.
b ***, P � 0.001; **, P � 0.01; *, P � 0.1.

TABLE 2 Correlation coefficients of resistance to different drugs used to treat Klebsiella pneumoniae infection in a general hospital in the United
Statesa

Drug

Correlation coefficientb

AMP SAM FEP FOX CAZ CRO CIP GEN IPM LVX NIT SXT

AMK 0.031 0.304*** 0.266*** 0.218*** 0.451*** 0.442*** 0.425*** 0.174*** 0.247*** 0.432*** 0.098** 0.279***
AMP 0.098** 0.042 0.064* 0.066* 0.067* 0.073* 0.042 0.027 0.072* 0.319*** 0.077*
SAM 0.406*** 0.417*** 0.623*** 0.645*** 0.558*** 0.342*** 0.279*** 0.542*** 0.183*** 0.466***
FEP 0.356*** 0.603*** 0.605*** 0.458*** 0.270*** 0.447*** 0.452*** 0.081** 0.366***
FOX 0.410*** 0.400*** 0.436*** 0.227*** 0.379*** 0.446*** 0.180*** 0.213***
CAZ 0.909*** 0.683*** 0.414*** 0.367*** 0.668*** 0.160*** 0.447***
CRO 0.696*** 0.464*** 0.382*** 0.672*** 0.165*** 0.489***
CIP 0.410*** 0.308*** 0.982*** 0.174*** 0.472***
GEN 0.207*** 0.375*** 0.103*** 0.374***
IPM 0.314*** 0.086** 0.232***
LVX 0.169*** 0.483***
NIT 0.127***
a Data source, WHONET (n � 1,095). AMK, amikacin; AMP, ampicillin; SAM, ampicillin-sulbactam; FEP, cefepime; FOX, cefoxitin; CAZ, ceftazidime; CRO, ceftriaxone; CIP,
ciprofloxacin; GEN, gentamicin; IPM, imipenem; LVX, levofloxacin; NIT, nitrofurantoin; SXT, trimethoprim-sulfamethoxazole.
b ***, P � 0.001; **, P � 0.01; *, P � 0.1.
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tified in the province of British Columbia, Canada, in 2012 (15)
(correlation coefficients of 0.229, 0.550, 0.054, and 0.052 for
methicillin versus clindamycin, erythromycin, trimethoprim-sul-
famethoxazole, and tetracycline, respectively [n � 5,214; P �
0.001 for all cases]).

In summary, these data show positive correlation between re-
sistance to different drugs and the higher-than-expected propor-
tion of MDR for Gram-positive and Gram-negative bacteria and
mycobacteria. The universality of excess MDR, involving resis-
tance conferred by a range of genetic and biochemical mecha-
nisms, raises the question of a shared mechanism(s) driving these
commonly observed patterns.

It should be noted that the association between resistance to mul-
tiple drugs and a higher-than-expected proportion of MDR shown
here is based purely on phenotype. Certainly, the genetic causes of
resistance to antibiotics or classes of antibiotics can vary even within a
species (for example, different classes of extended-spectrum beta-
lactamases in species of the Enterobacteriaceae [16] or the efflux
pump [mef] and ribosomal methylase [erm] mechanisms of mac-
rolide resistance in streptococcal species [17]). However, the ag-
gregation of resistance phenotypes within certain subgroups of a
species is a clinical problem and a scientific phenomenon worthy
of understanding, even if the genetic causes may vary.

MECHANISMS LEADING TO EXCESS MDR

The excess of MDR could be caused by unexpectedly high rates of
origin, high rates of spread of MDR strains or determinants, or

both. A major complicating factor is the possibility of horizontal
gene transfer, which can disseminate resistance to multiple anti-
biotics in a single step. However, it is conceptually useful to sepa-
rate the explanations for MDR bacteria into two phases: origin
and spread. It should be noted that the explanations we list here
for each phenomenon are not mutually exclusive.

Explanations for the Origin of MDR Strains

Single biochemical mechanism conferring resistance to multi-
ple drugs. The simplest explanation for observing an excess of
MDR is that a single biochemical mechanism confers resistance to
more than one drug (Fig. 1A). An example is that of bacterial
efflux pumps (18, 19), which extrude antibiotics out of cells such
that the intracellular antibiotic concentration decreases and resis-
tance to the antibiotics occurs. Some efflux systems are antibiotic
specific, but others confer resistance to multiple drug classes (19).
Typically, efflux pumps provide low-level drug resistance (20, 21).
Another example is cell wall thickening in S. aureus that resulted in
resistance to vancomycin and daptomycin, antibiotics with rela-
tively large molecular sizes (22).

(i) Testable predictions. Standard bacterial genetics (knockout
and complementation or overexpression), combined with mea-
surement of corresponding strains’ MICs (the lowest concentra-
tion of an antibiotic that inhibits growth of a microorganism) for
various drugs, can confirm or reject the hypothesis that a single
biochemical mechanism confers multiple resistance. In the case

TABLE 3 Correlation coefficients of resistance to different drugs used to treat Escherichia coli infection in a general hospital in the United Statesa

Drug

Correlation coefficientb

AMP SAM FEP FOX CAZ CRO CIP GEN IPM LVX NIT SXT

AMK �0.009 0.012 0.084*** 0.032 0.023 0.012 0.050** 0.009 0.101*** 0.050** �0.017 0.002
AMP 0.540*** 0.096*** 0.130*** 0.132*** 0.177*** 0.130*** 0.144*** �0.025 0.132*** �0.128*** 0.207***
SAM 0.138*** 0.218*** 0.188*** 0.137*** 0.117*** 0.221*** 0.010 0.119*** �0.083*** 0.100***
FEP 0.197*** 0.622*** 0.531*** 0.263*** 0.148*** 0.172*** 0.263*** 0.074*** 0.072***
FOX 0.334*** 0.352*** 0.281*** 0.071*** 0.103*** 0.289*** 0.086*** �0.022
CAZ 0.728*** 0.273*** 0.142*** 0.161*** 0.273*** 0.084*** 0.058**
CRO 0.374*** 0.121*** 0.113*** 0.376*** 0.080*** 0.124***
CIP 0.302*** 0.054** 0.994*** 0.037 0.176***
GEN 0.003 0.299*** 0.028 0.202***
IPM 0.054** �0.007 0.032
LVX 0.039* 0.178***
NIT 0.027
a Data source, WHONET (n � 2,731).
b ***, P � 0.001; **, P � 0.01; *, P � 0.1.

TABLE 4 Correlation coefficients of resistance to different drugs used to treat Pseudomonas aeruginosa infection in a general hospital in the United
Statesa

Drug

Correlation coefficientb

CAZ IPM ATM CIP LVX GEN TOB AMK

PIP 0.574*** 0.305*** 0.343*** 0.208*** 0.183*** 0.158*** 0.185*** 0.067
CAZ 0.286*** 0.331*** 0.212*** 0.163*** 0.221*** 0.162*** 0.234***
IPM 0.010 0.292*** 0.243*** 0.333*** 0.415*** 0.161***
ATM �0.022 0.001 0.000 0.040 0.004
CIP 0.759*** 0.348*** 0.353*** 0.126**
LVX 0.244*** 0.259*** 0.102*
GEN 0.673*** 0.575***
TOB 0.292***
a Data source, WHONET (n � 614). PIP, piperacillin; ATM, aztreonam; TOB, tobramycin.
b ***, P � 0.001; **, P � 0.01; *, P � 0.1.

Chang et al.

104 mmbr.asm.org March 2015 Volume 79 Number 1Microbiology and Molecular Biology Reviews

 on O
ctober 24, 2020 by guest

http://m
m

br.asm
.org/

D
ow

nloaded from
 

http://mmbr.asm.org
http://mmbr.asm.org/


where this is the only mechanism conferring resistance, the phe-
notypes should be found together without exception. For exam-
ple, the deletion of the efflux pump gene ifrA in Mycobacterium
smegmatis decreased the MIC (that is, increased the susceptibility)
to multiple drugs, and the overexpression of the same gene in-
creased resistance to multiple drugs (23).

Another testable hypothesis is that the diversity and intensity
of antimicrobial use in settings such as hospitals select for genetic
changes that expand the substrate specificity of resistance mecha-
nisms. In vitro evolution of plasmid-borne TEM beta-lactamases
with alternating exposure to a penicillin and a cephalosporin was
shown to select for dual specificity for these two related com-
pounds; moreover, the sequence changes that evolved mimicked
those observed in human isolates, while exposure of plasmid-
bearing bacteria to only one of the two antimicrobial compounds
produced sequence changes in the beta-lactamase that were not
previously observed in human isolates (24).

(ii) Practical implications. Development of efficient efflux
pump inhibitors may lead to the renewed effectiveness of several
drugs in treating infections for which this mechanism is important
(25, 26). For example, verapamil, an efflux pump inhibitor, has
been shown to increase antituberculosis drug efficacy in mice
(27). It should, however, be noted that efflux pump inhibitors
should have limited effects on the host to have clinical utility.
Those clinically available, such as verapamil and reserpine, have
host pharmacological effects that limit their utility as antimicro-
bial therapies (25, 28).

Genetic linkage. MDR strains may arise because determinants
of resistance to multiple drug classes are genetically linked, be-
cause they are either physically close on bacterial chromosomes
(thus coinherited vertically and potentially cotransformed when
shared horizontally) or on the same horizontally transmitted ele-
ment, such as a plasmid or conjugative transposon (Fig. 1B). In

such cases, when a strain acquires one resistance phenotype, it
acquires many.

Horizontally transmitted elements, such as transposons, in-
tegrons, and plasmids, are often modular and can incorporate
new elements over time (29, 30). Transposons contain genes
encoding transposases that facilitate incorporation to and from
other genomic regions (18). Integrons accumulate gene cas-
settes with specific recombination sites through site-specific
recombinases encoded by the integrons themselves. Trans-
posons and integrons may appear on the chromosome or on a
plasmid. These elements may be transmitted within and be-
tween species through transformation, transduction, and/or
conjugation (reviewed in reference 18).

The genetic mechanisms (cassette-based recombination, con-
jugation, and transposition) underlying these mobile elements are
increasingly well understood (29, 30); however, the selective pres-
sures that keep these resistance elements together (despite possi-
ble fitness costs for some of the genes involved) are less clear.

(i) Examples. Conjugative transposon Tn1545 in S. pneumoniae
contains genes for resistance to multiple antibiotics, including ka-
namycin, macrolide-lincosamide-streptogramin B-type antibiot-
ics, and tetracycline, and is capable of transferring to a new bacte-
rial host cell via conjugation or transposition to another genomic
region (31). Integrons in Enterobacteriaceae carry genes encoding
resistance to unrelated antibiotics such as beta-lactams, aminogly-
cosides, sulfonamides, and chloramphenicol (32). There are also
examples of plasmids without integrons in Enterobacteriaceae car-
rying antibiotic resistance genes for multiple drug classes, such as
aminoglycosides, beta-lactams, tetracycline, chloramphenicol,
and sulfamethoxazole (33).

(ii) Testable predictions. In contrast with multiple resistance
mechanisms encoded by a single gene or operon, these determi-
nants are not necessarily always found in combination with one
another but are encoded by genetic determinants that are adjacent
on the chromosome or plasmid. This prediction can be tested by
knockout, complementation, and/or sequencing of chromosomes
or plasmids. Deleting each gene and comparing the MICs before
and after deletion can test whether genes on the same chromo-
some or plasmid confer resistance to different drugs. If genes con-
ferring resistance to each drug are known, sequencing of chromo-
somes or plasmids can confirm the genetic linkage of these genes
on the same chromosome or plasmid.

(iii) Practical implications. The initial appearance of multiple-
drug resistance on a single genetic element likely occurs when

TABLE 5 Correlation coefficients of resistance to different TB drugs
among pretreatment casesa

Drug

Correlation coefficientb

RMP EMB STM

INH 0.683 0.554 0.559
RMP 0.621 0.481
EMB 0.417
a INH, isoniazid; RMP, rifampin; EMB, ethambutol; STM, streptomycin.
b All of the cases have P values of � 0.001 (n � 18,619).

TABLE 6 Correlation coefficients of resistance to different drugs used to treat Staphylococcus aureus infection in a general hospital in the United
Statesa

Drug

Correlation coefficientb

OXA ERY CLI TCY GEN LVX SXT RIF

PEN 0.380*** 0.350*** 0.153*** 0.050* 0.046* 0.248*** 0.056** 0.027
OXA 0.614*** 0.415*** 0.017 0.094*** 0.733*** 0.047* 0.123***
ERY 0.420*** 0.052* 0.065** 0.603*** 0.054** 0.094***
CLI 0.124*** 0.094*** 0.520*** 0.101*** 0.085***
TCY 0.256*** 0.036 0.185*** 0.006
GEN 0.111*** 0.304*** 0.109***
LVX 0.109*** 0.140***
SXT 0.064**
a Data source, WHONET (n � 2,377). OXA, oxacillin; TCY, tetracycline; RIF, rifampin.
b ***, P � 0.001; **, P � 0.01; *, P � 0.1.
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bacteria resistant to the component drugs come into proximity or
contact, such that horizontal transfer and recombination can oc-
cur. In principle, an antibiotic management strategy might be de-
signed to reduce the probability of such contacts. However, theo-
retical studies of one such approach, known as antimicrobial
cycling, have shown that cycling reduces such contacts only under
restricted conditions (34); in practice, cycling strategies are diffi-
cult to implement and to study (35). Recently, an alternative strat-
egy, “adjustable cycling,” in which treatment is changed when not

effective in patients, has been proposed and shown in a theoretical
model to suppress the emergence of MDR in most settings (36).

The clinical impact of these linked determinants depends on
their persistence as a linked group. Improved understanding of
the selective pressures that preserve and allow the proliferation of
these multidrug resistance elements may improve our ability to
reduce their frequency.

Highly mutable or recombinogenic bacterial lineages. Bacte-
rial lineages vary in their rates of mutation. Such variation is often

FIG 1 The mechanisms for the origin and proliferation of MDR strains. Red and blue lightning bolts indicate treatments with drug A and drug B. Green
rectangles represent efflux pump genes. Red and blue rectangles represent drug A and drug B resistance determinants, respectively. (A) Efflux pump.
Bacteria obtaining efflux pumps (green square) that extrude more than one antibiotic out of cells confers MDR. (B) Genetic linkage. If two resistance
determinants are located in the same horizontally transferred element, when a strain acquires one resistance phenotype, it acquires both. (C) Differential
mutation rate. Highly mutable lineages have higher frequencies of acquiring multiple drug resistance determinants than those that are not highly mutable.
(D) Multidrug therapy with accelerated treatment failure in resistant infections. If treatment fails and singly resistant strains emerge, they are likely to
obtain second drug resistance and be replaced. The thickness of the arrows reflects the relative transition probabilities between states. (E) Associated
linkage selection. Resistance to a new drug (blue) occurs on a background of resistance to an older drug (red) following a change in treatment practices
from drug A to drug B. The resistance to the older drug continues spreading because of the linkage to the resistance of the new drug and the selective
pressure from the usage of the new drug. (F) Bystander selection. Resistance in one bacterium is advantageous because it allows strains of that species to
survive when the host is treated for another infection with a drug that also kills that species. For example, if drug A is used to treat this species and drug
B is used to treat another infection in the same patients, MDR strains survive and strains resistant only to drug A are killed. (G) Positive epistasis. If the
cost of MDR is smaller than the total cost of each resistance determinant on its own, MDR strains may outcompete strains with a limited number of
resistance elements and spread more quickly. (H) Niche differentiation. Multiple unrelated drug classes may be used more frequently in certain
population subgroups, resulting in an excess of MDR when the high- and low-use subgroups/settings are considered together. (I) Importation of MDR
strains. The MDR strains from a high-drug-use “source” population are introduced into a lower-drug-use “sink” population and are able to spread as a
result of competing successfully with pan-susceptible strains due to their resistance to the drug (blue) used in the sink population.
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due to variation in genes involved in DNA proofreading, such as
the mismatch repair system (37). Additionally, certain bacterial
lineages vary in their ability to accept and integrate transforming
DNA (38). Because mutation and recombination are the sources
of drug resistance genes and alleles, more highly mutable or highly
“recombinogenic” lineages should have higher frequencies of
multiple-drug resistance determinants, so that in the population
as a whole, these lineages would likely contribute disproportion-
ately to the frequency of multiple-drug resistance (Fig. 1C).

(i) Examples. Such a process has been proposed for the accu-
mulation of MDR in highly mutable lineages, such as the Beijing
lineage, in tuberculosis (39). Combining mathematical modeling
(40) with experimental measurements of resistance mutation
rates, Ford et al. (39) argued that higher mutation rates in some
strains could lead to the presence of multiply drug-resistant vari-
ants within a patient at the start of treatment. Such preexisting
resistant variants could increase the risk of treatment failure.

In S. pneumoniae, resistance to multiple drugs is more com-
mon in lineages showing evidence of higher rates of recombina-
tion (41), a finding that has been supported by population
genomic studies (38, 42, 43).

(ii) Complexities. Antibiotic exposure at sublethal concentra-
tions can induce elevated mutation rates in bacteria (44, 45).
Therefore, antibiotic exposure, which is generally seen as a selec-
tive force, may also play a role in the generation of mutations. As
a consequence, mutation rates during treatment (especially when
drug concentrations are low) may be elevated compared to those
measured in antibiotic-free settings. This mutation rate increase is
not specific to mutations conferring resistance to the drug admin-
istered but rather is a general elevation due to DNA damage
caused by reactive oxygen species created by the bacteria under
antibiotic stress (45).

Mutation and recombination rates are also traits under selec-
tion in their own right. Selection in changing environments (46–
48) and specifically for resistance to multiple antibiotics (49) may
provide second-order selection for elevated mutation rates. Thus,
high mutation rates may be both a cause and a consequence of
multiple-drug resistance.

(iii) Testable predictions. A straightforward test of the hypoth-
esis that higher rates of mutation and recombination lead to faster
accumulation of multiple-drug resistance is to assess whether
present-day MDR strains show elevated rates of mutation or re-
combination compared to those of non-MDR strains. It may be
possible to identify susceptible ancestral strains to currently ob-
served MDR strains by phylogenetic analysis, and the mutational
or recombinational assays could then be performed on these an-
cestral strains if historical samples are available.

If the variation in recombination rate contributes to the high
level of MDR, strains with higher recombination rate are expected
to acquire MDR with a higher probability. Recombination events
can be inferred in a bacterial lineage from the existence of tracts of
high densities of single-nucleotide polymorphisms (SNPs), indi-
cating import of genetic material from a diverged source (43).
Those sites at which recombination has not occurred can then be
used to estimate a phylogeny and molecular clock by conventional
means, and inferred recombination events can be mapped onto
the tree topology for estimating the ratio of recombination to
mutation rate (for an example, see reference 43). These analyses
may be performed using the software packages ClonalFrame and
Gubbins (43, 50, 51). It should be noted that this approach as-

sumes that the genomes under analysis are closely related, that
there has not been time for extensive clustering of SNPs to have
been produced in genes under selection, and that anomalous con-
centrations of SNPs are therefore best explained by recombination
with a divergent donor strain that is not in the data set.

If variation in mutation rate leads to the excess of MDR, these
MDR strains are expected to show higher substitution rates at
synonymous sites or other neutral sites such as pseudogenes, be-
cause neutral theory predicts that the substitution rate of neutral
sites equals the mutation rate (52). Population genetic tools, such
as the PAML package (53), can be used to estimate lineage-specific
substitution rates when sequences from both an outgroup and
strains of interest are available. However, the amounts of homol-
ogous recombination thought to occur in many bacterial species
presents significant challenges to phylogenetic and population ge-
netic analyses (54) and may produce considerable biases in esti-
mates of mutation rate (55).

While elevated mutation or recombination rates in MDR lin-
eages (39) are evidence in favor of this mechanism, the absence of
higher rates in MDR strains does not disprove it. For example,
recombination or mutation rates may have varied over the evolu-
tionary history of the lineage, such that multiple resistance accu-
mulated while the lineage was highly mutable/susceptible to re-
combination, but this trait may have changed since the resistance
determinants were acquired; this is a particular risk for highly
changeable lineages (56).

(iv) Practical implications. The practice of combination treat-
ment with multiple drug classes, described a century ago by Eh-
rlich (57), remains a standard approach for treatment of infec-
tions, such as tuberculosis, in which resistance occurs primarily by
mutation and mutants resistant to any single drug are expected to
be present in many infected hosts (58). If it were possible to assess
the genetic background, and hence the likely mutation rate, of a
pathogen infecting an individual, it is possible that the number or
dose of drugs would be increased in treating highly mutable lin-
eages to counteract the risk of preexisting MDR strains in a pre-
dominantly drug-susceptible infection. While fanciful at the pres-
ent, as rapid pathogen genome sequencing becomes more
common in diagnostic microbiology, the practicality of this ap-
proach may also increase (59, 60).

Multidrug therapy with accelerated treatment failure in resis-
tant infections. As noted in the preceding section, multidrug ther-
apy has long been recommended for treating infections in which
resistance is acquired by mutation to ensure that mutants that are
resistant to one drug are killed by other drugs in the “cocktail”
(57). This strategy is motivated by the idea that the probability of
obtaining mutants resistant to multiple drugs with different
mechanisms is much smaller than that of obtaining singly resis-
tant mutants, and using drug combinations is more likely to kill all
the bacteria, preventing the emergence of drug resistance. In par-
ticular, if the product of the expected frequency of bacteria resis-
tant to all drugs being used (P) and the bacterial population size
(N) is much less than one (NP �� 1), most hosts will harbor no
bacteria which are resistant to every drug being taken. This calcu-
lation is typically made on the assumptions that the infecting in-
oculum is susceptible to all drugs in the regimen and that any
resistant mutants will arise during the course of replication of the
bacterial population within the host, at a predictable frequency
(40). If, however, the infecting inoculum is already composed of
bacteria resistant to one or more of the drugs used, the frequency
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of bacteria resistant to all the other drugs will be considerably
higher than assumed and possibly high enough to make NP � 1,
indicating that a mutant resistant to all drugs used may be present
and able to replicate. In simple terms, the emergence of multiple
resistance is much more likely from a singly resistant precursor
than from a pan-susceptible precursor; the first resistance muta-
tion may form a “slippery slope” facilitating the emergence and
selection of further resistance mutations. In this mechanism, un-
der multidrug therapy, the singly resistant state is unstable, and
those strains will be replaced by strains that have acquired muta-
tions for additional drug resistance, leading to an excess of MDR
(61, 62) (Fig. 1D).

(i) Example. As drug resistance in M. tuberculosis is generally
caused by spontaneous mutations (63) and the population of M.
tuberculosis within a patient is large enough to generate drug-
resistant mutants (64), multidrug chemotherapy is typically used
for treating tuberculosis (58) in order to reduce the probability of
emerging drug resistance.

One problem that has been observed in treatment of tubercu-
losis is the existence of mixed infections with a subpopulation of
resistant organisms, which may be undetected when treatment is
initiated but is rapidly selected by first-line treatment tailored to
the assumed full susceptibility of the infecting strain (61, 62).

Even starting from a susceptible inoculum, singly resistant
strains (or in rare cases, even doubly resistant strains [40]) could
be present due to patient noncompliance with the treatment reg-
imen, such as interrupted antibiotic treatment or insufficient dos-
age (65). Directly observed therapy for tuberculosis improves pa-
tient adherence and decreases the frequency of acquired drug
resistance (66).

(ii) Testable predictions. Evidence for the importance of this
mechanism would include a high frequency of MDR (but not
singly resistant strains) developing during multidrug therapy of
infections for which the drug susceptibility of the initial infection
was unknown or mismeasured, perhaps due to a mixed infection
or a reinfection (61, 62). If genetic mechanisms of drug resistance
are known, sequences of bacteria isolated at different time points
from the same patients could be used to test this hypothesis. It is
expected under this mechanism that singly resistant strains were
present at the beginning of treatment and MDR emerged later on,
and thus a gene(s) or mutation(s) conferring single-drug resis-
tance is expected to be found in sequences of isolates from the
beginning of treatment. Of course, if the singly resistant infection
were known at the time of treatment initiation, it would be inap-
propriate to treat it as if it were pan-susceptible. Thus, to know
about this problem (in a timely fashion) is to try to prevent it, and
only retrospective investigations are likely to find evidence for this
problem (61, 62).

(iii) Practical implications. Standard WHO-recommended re-
treatment regimens for tuberculosis have historically called for
addition of a single drug to a failing four-drug regimen. Such an
approach resulted in many treatment failures due to the acquisi-
tion of resistance to the single effective drug that was added
(67, 68).

In settings where this mechanism plays a role, in practice
mainly tuberculosis, there is a special value of rapid diagnostics
that can assess drug susceptibility at baseline, such as GeneXpert
MTB/Rif (69) or rapid pathogen genome sequencing, because
such diagnostics could confirm that the majority population of
the infecting organism has susceptibility to enough drugs to pre-

vent the emergence of further resistance (perhaps requiring addi-
tion or substitution of drugs in the standard regimen, when resis-
tance to one or more drugs is found at baseline). This diagnostic
information would not only improve patient outcomes but also
reduce the rate at which new multiresistant strains are generated.
In the absence of such baseline diagnostics, the use of extra drugs
in a multidrug regimen might be warranted when the presence of
resistance to one or more drugs in the patient is suspected due to
population history or patient risk factors. Because singly drug-
resistant strains are more likely to arise due to patient noncompli-
ance with the treatment regimen, directly observed therapy may
help to reduce the possibility of the excess of MDR due to treat-
ment failure.

Explanations for the Proliferation of MDR Strains

Once MDR bacteria have emerged in one or more hosts, their
proliferation depends on their ability to survive and be transmit-
ted to other hosts, and changes in their relative frequency reflect
natural selection—their differential survival and transmission
compared to other lineages. In this section, we consider five mech-
anisms that can provide a selective advantage to MDR strains,
leading to increases in their frequency.

Associated linkage selection. The proliferation of a gene (and
the strain harboring it) need not be the consequence of direct
selection upon that gene and the trait it encodes but may result
from selection of others that are inherited along with it. This is the
phenomenon of linkage, and it is especially hard to disentangle in
partially clonal organisms like most bacteria. If resistance to a new
drug occurs on a genetic background of resistance to older drugs
following a change in treatment practices, then resistance to the
older drugs can continue spreading because of the linkage to the
resistance to the new drug, selected by use of the new drug (Fig.
1E). Resistance to new drugs is likely to arise on the background of
resistance to the older drugs because the frequency of older drug
resistance is likely to be high due to longstanding selection pres-
sure imposed by usage of the older drugs (70). This can be exac-
erbated if particular genetic backgrounds are more able to tolerate
the fitness costs of resistance determinants, either because the fit-
ness costs are lower in these backgrounds or because these back-
grounds have higher fitness to begin with and hence can better
tolerate a given fitness cost (see also “Positive epistasis between
drug resistance determinants or between resistance determinants
and genetic background” below).

(i) Examples. Regarding E. coli, although sulfonamide prescrip-
tions in the United Kingdom decreased greatly, the proportion of
sulfonamide-resistant E. coli did not decline (6). One possible ex-
planation is the close linkage between sulfonamide resistance
genes and other antibiotic resistance determinants and their con-
tinued selection through the usage of other antibiotics. sulII genes
encoding sulfonamide resistance in E. coli are located on plasmids
carrying several resistance determinants (6). A follow-up study 5
years later reported the persistence of sulfonamide resistance and
the continued association between sulfonamide resistance and re-
sistance to other drugs (71).

In S. pneumoniae infections, antibiotics other than penicillin,
such as azithromycin (72), erythromycin, trimethoprim-sulfame-
thoxazole (73, 74), and cephalosporins (75), may select more ef-
ficiently for penicillin-resistant strains than penicillin itself. While
the MICs associated with resistance to azithromycin are farther
above clinically achievable concentrations, penicillin dosing can
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be increased to combat less-susceptible strains and still have lim-
ited effects on toxicity experienced by the patient. As clinically
achievable levels of macrolides (such as azithromycin) kill suscep-
tible but not resistant bacteria while clinically achievable levels of
penicillin may have some inhibitory effect on resistant strains,
macrolides are more selective killers of susceptible bacteria than
penicillin. If most resistance is multidrug resistance, then penicil-
lin resistance will be coselected with macrolide resistance. This is
exacerbated in drugs with a long half-life (e.g., azithromycin),
which allows them to sustain high concentrations for a longer
period.

(ii) Testable predictions. Associated linkage selection should
be tested as a mechanism for persistence of resistance to previously
used drugs after the use of such drugs is reduced in a population.
If the persisting lineages are resistant to both the previously used
drug and the drug(s) that is used in its place, then this could be
evidence of associated linkage selection. Within individuals, the
selective role of one drug in promoting resistance to another, un-
related drug may be assessed by comparing the prevalence of re-
sistance to the second drug in individuals treated with the first, as
in the S. pneumoniae examples described above.

In ecological studies of the relationship between antimicrobial
use and resistance, associations between use of one drug and pop-
ulation-level resistance to another are expected when associated
linkage selection is at play. However, given the positive correla-
tions across populations between high use of some antimicrobial
classes and high use of other classes, such data may also reflect
direct effects of each drug class on resistance to itself. For this
reason, individual-level data, such as those described above for S.
pneumoniae, are more informative.

Using sequence data from good-quality longitudinal samples
documenting the emergence of resistance, phylogenetic analysis
could also be used to test this hypothesis. If resistance to the new
drug arose in a background of resistance to older drugs, we would
see in phylogenetic trees that the strains with the new drug resis-
tance would coalesce with the older drug-resistant strains more
recently than the coalescence between the older drug-resistant and
older drug-susceptible strains. Such inference may be more com-
plicated when resistance is encoded by mobile genetic elements.

(iii) Practical implications. In principle, recommendations for
drug choice for treating a particular infection could be changed
when resistance to a currently used drug is still low, so the new
drug resistance is less likely to happen in the genetic background
of resistance to older drugs. The practicality of this idea is limited
by the paucity of alternative classes of drugs available, and it
should be noted that such a policy (i.e., recommending a new
first-line treatment when the frequency of resistance to the current
treatment exceeds 5%) (76) has not prevented the success of MDR
strains of N. gonorrhoeae in the United States. (The effectiveness
may be reduced by importation of MDR strains; see “Importation
of MDR strains and geographic source-sink dynamics” below.)
The potential of this approach, i.e., changing drug choice recom-
mendations when resistance to a currently used drug is low, likely
depends on factors such as the relative fitness advantages of dif-
ferent resistance patterns. Modeling may help determine any cir-
cumstances in which this strategy is advantageous.

Perhaps a more effective strategy, when drugs vary in their
tendency to select MDR strains within a host during treatment, is
to reduce selection for resistance by choosing a drug regimen that
is less likely to select for MDR strains while maintaining treatment

efficacy. For example, it has been suggested that choosing amoxi-
cillin-clavulanate over azithromycin can accomplish these twin
goals in treatment of acute otitis media (77). Here, as described
above, the explanation seems to be that MICs of strains resistant to
amoxicillin-clavulanate are typically close to clinically achievable
concentrations, so there may be some effect of this combination
on even the “resistant” strains, whereas azithromycin-resistant
strains have MICs far above in vivo concentrations and hence are
little affected by treatment.

There has been much discussion of the need for new diagnos-
tics which would permit rapid assessment of the resistance phe-
notype of an infection, permitting tailoring of the treatment to the
individual resistance phenotype, rather than the “conservative”
approach of empirical therapy with a drug that is statistically likely
to be effective in the absence of knowledge of the susceptibility
profile of a particular patient’s infection (78). Predictions of the-
oretical models may help to assess the effects of such diagnostics
and treatment protocols on the selection of singly and multiply
resistant strains. One model of the impact of the GeneXpert MTB/
RIF diagnostic for tuberculosis infection and rifampin resistance
indicated that the system’s use would reduce the absolute preva-
lence of MDR TB, but because the projected effect on reducing the
prevalence of drug-susceptible forms of TB was more dramatic,
the relative proportion of MDR in the TB population would in-
crease (2). This finding emphasizes the point that reducing disease
burden overall, specifically MDR disease burden, is the major goal
of public health interventions. While the proportion of disease
burden that is MDR may be easier to measure, reducing this pro-
portion should rarely if ever be a goal in itself, given that one can
reduce MDR and non-MDR disease and have either an increase or
decrease in the proportion of MDR.

Bystander selection. When a drug is used to treat infection with
a particular species, other species carried by that same host (“by-
standers”) may be affected by the treatment, and multidrug resis-
tant variants of these bystander species may have an advantage
under a varying regimen of treatments experienced by different
hosts (Fig. 1F).

(i) Examples. Selection for resistance to antimicrobials in com-
mensal organisms, such as the normal flora of the digestive and
upper respiratory tracts, must occur by this mechanism, since
commensals by definition are not causing infections yet are sub-
ject to selection by systemic antibiotics (79, 80). During broad-
spectrum antimicrobial therapy, the proportion of resistant
strains of commensal organisms in the gut may increase (81). The
selective agent need not be even an antimicrobial used for treat-
ment but may be another selective agent that favors a trait linked
to drug resistance in commensals. For example, exposure of com-
mensal gut flora to mercury during installation and removal of
dental fillings selected for drug-resistant strains that were also
mercury resistant (82). Genes conferring resistance to environ-
mental hazards such as heavy metals are often transferred between
lineages together with antibiotic resistance genes on plasmids
(83).

Penicillins and tetracyclines were recommended for treating
gonorrhea in the United States prior to 1993 and then were re-
placed by fluoroquinolones and later by cephalosporins. During
the period of the rise in the proportion of fluoroquinolone-resis-
tant N. gonorrhoeae strains, the MDR strains resistant to fluoro-
quinolones, penicillin, and tetracycline increased faster than other
fluoroquinolone-resistant types even though penicillins and tet-
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racyclines were no longer recommended for treatment. It has been
suggested that during the same period, although penicillins and
tetracyclines were not recommended for treating gonorrhea, pa-
tients with asymptomatic gonorrhea might have been treated with
penicillins and/or tetracyclines for infections other than gonor-
rhea, and therefore MDR N. gonorrhoeae strains were selected due
to their resistance to penicillin and tetracycline (7), a suggestion
that has also been proposed in the United Kingdom (84).

While bystander selection is most often considered for com-
mensal or asymptomatically infecting organisms, it may also oc-
cur when an infection is undiagnosed or misdiagnosed, and treat-
ment is directed at the (nonexistent) infection the patient is
thought to have. A major driver of fluoroquinolone resistance in
M. tuberculosis may be the use of fluoroquinolone monotherapy
among individuals with unrecognized pulmonary tuberculosis
being treated for presumptive community-acquired pneumonia
(85). This can lead to multiple resistance if the M. tuberculosis
strains were already resistant to other drugs or later become so
during treatment.

(ii) Testable predictions. In assessing the relationship between
antimicrobial use and resistance in a particular pathogen, it may
be more relevant to consider total prescriptions than to consider
prescriptions for treatment of that pathogen, a practice that has
been common in studies of commensal colonizing bacteria (62,
86, 87) but has not to our knowledge been examined, for example,
in the setting of sexually transmitted diseases. If bacteria of species
A resistant to drugs that are no longer used for treatment of species
A infections are found to persist especially in settings where these
drugs are used for treatment of other infections, and resistance
mutations are deleterious, bystander selection would be a likely
hypothesis to explain their persistence. More generally, a predic-
tion of this mechanism is that when comparing bacterial popula-
tions across space and/or time, the prevalence of particular resis-
tance phenotypes should be positively correlated across different
named bacterial species, a phenomenon that has been called core-
sistance (88).

(iii) Practical implications. The existence of bystander selec-
tion is cited as a reason to prefer narrow-spectrum antimicrobials
that can target the infecting pathogens without affecting bystand-
ers. For example, current U.S. guidelines for treatment of uncom-
plicated urinary tract infections recommend narrow-spectrum
agents for this reason, which is broadly termed avoidance of “col-
lateral damage” (89).

Much of the clinical judgment around antimicrobial steward-
ship and avoiding unnecessary use comes from a concern about
the bystander effects on the individual’s commensal flora (90).
While they are correct for broad-spectrum antibiotics, such con-
cerns are not evidence based in the case of narrow-spectrum anti-
infective agents, including many antituberculosis drugs and anti-
viral drugs. There are many reasons not to overuse such drugs,
including side effects and cost. However, inadvertent oseltamivir
treatment of an individual not infected with influenza virus, for
example, is unlikely to have any effect on resistance: if the infec-
tion is not there and the bystander flora are not affected by osel-
tamivir, there is no species on which bystander selection can act.

Positive epistasis between drug resistance determinants or
between resistance determinants and genetic background. Fit-
ness is defined as the ability to survive and leave offspring in the
population. The presence of resistance has been shown in some
(but not all) cases to lead to a “fitness cost,” reducing the growth

and survival of resistant strains in the absence of antibiotics (91). A
fundamental factor determining the success of combinations of
these resistance genes is how they interact in epistasis. Epistasis
occurs when the combined fitness effect of multiple alleles from
different loci is different from the sum of the individual allele
effects. Epistasis is widespread in eukaryotes (92, 93), bacteria
(94), and viruses (95, 96). If the cost of MDR in the absence of
antimicrobial use is smaller than the total cost of each resistance
determinant on its own (positive epistasis), MDR strains may out-
compete strains with a limited number of resistance elements and
spread more quickly (Fig. 1G). [In a continuous-time model, pos-
itive epistasis is defined by comparing the fitness cost of MDR and
the “sum” of the fitness cost of each resistance determinant; in a
discrete-time model, assuming that the costs of resistance to two
drugs are c1 and c2, no epistasis means that the cost of MDR is
equal to 1 � (1 � c1)(1 � c2).]

Alternatively, if drugs that are used have interactions with each
other (97) and the combined effect of multiple drugs is higher
than the total of the individual effects (“synergistic effects”), the
selective pressure of MDR is greater than would be expected if the
effects of drugs were additive. This may create epistatic fitness
interactions between resistance determinants in the setting of
multiple-drug treatment if resistance to one drug is more fitness
enhancing in a strain which is already resistant to other drugs. This
process, if it occurs, may lead to a disproportionate increase in the
frequency of MDR strains relative to that of singly resistant strains.

(i) Examples. Positive epistasis is pervasive among alleles con-
ferring resistance to different antibiotics (quinolone, rifampin,
and streptomycin) in E. coli and may explain the high level of
MDR in E. coli (98). Additionally, in P. aeruginosa the cost of
acquiring streptomycin resistance mutations is greater in a rifam-
pin-sensitive background than in a rifampin-resistant back-
ground (99), indicating positive epistasis and suggesting that
strains resistant to both streptomycin and rifampin are selectively
more favored than strains with only streptomycin resistance even
when rifampin is not used for treatment.

Moreover, epistasis may exist between the genetic background
and drug resistance determinants. As an example, the fitness costs
of resistance mutations in the genetic background of Beijing lin-
eage M. tuberculosis are smaller than those in other genetic back-
grounds, or compensatory mutations are in easier reach for them,
possibly explaining the association between Beijing TB genotype
and MDR (100). In a mouse model of gonococcal infection, the
fitness cost of fluoroquinolone resistance mutations depends on
genetic background (101).

(ii) Testable predictions. Phylogenetic methods (95, 102) have
been developed to test for the presence of epistasis in general,
based on the idea that sites with epistatic interactions will tend to
show correlated substitutions within phylogenies. These ap-
proaches can in principle be applied to the context of multiple-
drug resistance, although this may be hampered by the presence of
horizontal transfer, which makes it hard to know whether cooc-
currence of mutations is genuinely independent or merely
through introduction from the same source by recombination.
Likewise, experimental measurements of the fitnesses of different
genotypes (103) could also be used for detecting epistasis between
resistance determinants. In such settings, it is important to distin-
guish between epistatic interactions in the drug-exposed and
drug-free settings, which may not always be the same.

(iii) Practical implications. In principle, if positive epistasis be-

Chang et al.

110 mmbr.asm.org March 2015 Volume 79 Number 1Microbiology and Molecular Biology Reviews

 on O
ctober 24, 2020 by guest

http://m
m

br.asm
.org/

D
ow

nloaded from
 

http://mmbr.asm.org
http://mmbr.asm.org/


tween resistance to different drugs could be detected experimen-
tally before the emergence of MDR, we might avoid using combi-
nations of drugs for which resistance determinants may have
positive epistasis and increase the spread of MDR. However, the
downside of such a choice would be to reduce the usage of highly
synergistic combinations of drugs, which may be valuable thera-
peutically (97).

Niche differentiation: aggregation of multiple drug selection
pressures within specific populations. The use of multiple unre-
lated drug classes is higher in certain population subgroups, such
as young children and the elderly (104) and sexually active persons
with a high incidence of sexually transmitted infection (105). Use
is also higher in certain settings, such as hospitals and long-term-
care facilities, than in the general population. Antibiotic use also
varies geographically, both within (5) and between (86) countries.
The prevalence of resistance to each of these drugs may be higher
in the high-use settings/subgroups, resulting in an excess of MDR
when the high- and low-use subgroups/settings are considered
together (Fig. 1H). In population genetic terms, this is an example
of the Wahlund effect, in which associations between allele fre-
quencies are created when two partially or fully distinct popula-
tions are considered together (106, 107).

(i) Examples. High levels of use of multiple antimicrobial
classes in hospitals are thought to account for the high prevalence
of multiresistant organisms in these settings, with particularly
high levels of use and resistance in intensive care units (108).

Antibiotic use, including the use of classes such as macrolides,
penicillins, and cephalosporins, is higher in children under 5 than
in older children or adults in the United States (87, 104). Young
age is a risk factor for resistance to multiple drugs in common
colonizing bacteria such as S. pneumoniae (109). A notable “ex-
ception that proves the rule” in the case of S. pneumoniae is resis-
tance to fluoroquinolones, which appears sporadically and is only
very weakly associated with resistance to other drug classes (Table
1). Fluoroquinolones are not commonly used in children due to
side effects and hence do not contribute to the common selective
force for multiple resistance in children, who appear to be a “core
group” for S. pneumoniae transmission (110, 111). Thus, this
mechanism would predict exactly the pattern observed: high levels
of correlated MDR to all drug classes except fluoroquinolones.

(ii) Testable predictions. A signal of this mechanism is popu-
lation admixture, such that the multiresistant strains form a sub-
population genetically distinct from the susceptible ones, even
after excluding sites encoding resistance mechanisms. Such ad-
mixture may be detected by using F-statistics (112, 113), princi-
pal-component analysis (114), or clustering methods (115) on
genetic data after resistance-determining sites have been removed.

(iii) Practical implications. Identification of specific popula-
tions at risk for multiple resistance may aid in the selection of
empirical antimicrobial regimens that maximize the probability
of treatment success. In situations where the highly treated group
is also a “core group” that is a source of transmission to other
groups, the avoidance of a particular antimicrobial class in the
core group may preserve treatment options for the noncore
group, as they are unlikely to be infected with a strain resistant to
that class. Such an argument has been suggested as an additional
reason to avoid fluoroquinolone use in children, in order to pre-
serve the effectiveness of this class for treating adults (3).

Importation of MDR strains and geographic source-sink dy-
namics. High levels of antimicrobial use in certain populations

may increase the prevalence of resistance to many different drug
classes. If some of the above-described mechanisms are operative,
this may lead to an excess of MDR strains within the population,
or perhaps MDR strains will simply be at a high frequency given
the frequency of each resistance determinant in this population.
Either way, the MDR strains in this “source” population may then
be introduced into other, “sink” populations, where they spread,
competing successfully with pan-susceptible strains because they
have resistance to the drug(s) used in these recipient populations
(Fig. 1I). The result is that most strains in the sink populations are
either pan-susceptible or multiply resistant. As in other cases of
population admixture, the sink population reflects a mix of native
and imported strains, and the imported strains create an associa-
tion between resistance to one drug and resistance to others. This
process is different from the one described above because it can
happen in a single, truly well-mixed population, as long as there is
some importation of strains from another, largely independent
population.

(i) Example. With N. gonorrhoeae, East Asian strains are
thought to have entered western North America and spread east-
ward due to travelers bringing MDR strains (11, 116). The coun-
tries that are highly connected to the Pacific Rim show similar
epidemiological patterns (116).

(ii) Testable predictions. If MDR strains are imported, they
have a genetic background different from that of native strains. In
this case, similar to niche differentiation in the mechanism de-
scribed above, genetic differentiation between multiply resistant
strains and native strains is expected to be high and could be ex-
amined by the methods listed for that mechanism after excluding
resistance determinant sites. If genetic data from parental and
admixed populations are available, the admixture proportion
from each parental population can be estimated by maximum-
likelihood methods (117) and Bayesian approaches (118, 119).
Epidemiologically, populations that have similar exposure to the
source populations are expected to show similar patterns of drug
resistance. It is also expected that the frequency of travel between
source populations and sink populations is related to the appear-
ance of MDR strains in sink populations.

From an individual risk factor perspective, studies can assess
the extent to which MDR strains are associated with migration
from (120, 121) or travel to high-resistance areas. This mechanism
predicts that when MDR is rare, such associations should be
strong, but as the MDR strains spread endemically within the
“sink” population, the association may decline (7).

(iii) Practical implications. To the extent that multiple-drug
resistance in many populations is a consequence of importation
from the highest-use populations, international coordination of
antimicrobial control policies becomes increasingly important.
Moreover, heightened surveillance for MDR strains among trav-
elers may be appropriate, as a means of detecting and delaying
further spread of such strains. Once the MDR strains become
widespread in a new population, however, such measures may be
of little value.

CONCLUSIONS

Excess MDR is observed in many bacterial species. We have con-
sidered nine possible explanatory genetic and epidemiological
mechanisms. We first considered mechanisms for the appearance
of MDR strains, including individual biochemical mechanisms
responsible for the MDR phenotype (e.g., efflux pumps), genetic
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linkage, differential mutation or recombination rate, and multi-
drug therapy with accelerated treatment failure with multidrug
resistance. Mechanisms for the proliferation of MDR strains in-
clude associated linkage selection, bystander selection, positive
epistasis, niche differentiation, and importation of MDR from a
high-use population, followed by spread in a “recipient” popula-
tion.

We have documented the phenomenon of MDR frequencies
exceeding those expected from the product of individual resis-
tance frequencies by counting individual patient isolates with each
phenotype. It is worth emphasizing that from an evolutionary
perspective, many bacterial isolates with a given phenotype, such
as MDR, may result from a small number of “origin” events (122).
In this case, the origin of MDR may not occur at a particularly high
rate, and the high prevalence of MDR must be attributed mainly to
successful spread of MDR strains. On the other hand, in S. pneu-
moniae, even within what appeared to be a clonal lineage, there
were multiple events of gain and loss of resistance determinants
both by point mutations and by horizontal gene transfer (43). In
the extreme case, there may be very little clonal spread of a partic-
ular resistance phenotype but rather repeated appearance in mul-
tiple lineages, as appears to occur for fluoroquinolone resistance
in S. pneumoniae (123, 124).

These mechanisms are not mutually exclusive; several mecha-
nisms may contribute to the origin, and several to the dissemina-
tion, of MDR bacteria. In our classification we have tried to sepa-
rate mechanisms that reflect different kinds of events at the patient
level: those mechanisms listed for “origin” generally refer to ways
in which MDR organisms arise within a patient, while those listed
for “dissemination” generally refer to the process of spread be-
tween patients. Seen at a higher level of generality, one could argue
that observing an excess of MDR reflects either a higher rate of
formation of such strains or a higher fitness of such strains than
expected from the observed rates of formation and proliferation
of the individual drug resistance alleles. From a broad, population
genetic perspective, several of these processes, which we have dis-
tinguished, could be combined under the heading of epistasis
(92). For example, we have described treatment failure leading to
multiple-drug resistance as a distinct process for the origin of
MDR strains. It could alternatively be described as enhanced fit-
ness of resistance to a second drug in strains already resistant to a
first drug, leading to the survival of dual-resistant strains under
combination therapy. Similarly, one could recast bystander selec-
tion as a form of epistasis. MDR strains have a fitness advantage
higher than the sum of fitness advantages of singly resistant strains
in the environment where individuals are treated with a range of
antibiotics. Nonetheless, because they involve different kinds of
events at the patient level (such as multidrug therapy or treatment
targeting another infection) and since the testable predictions and
practical implications of these mechanisms vary, we have chosen
to consider them separately. The unifying perspective of popula-
tion genetics offers a complementary approach that notes the
common features of these mechanisms.

If the genetic mechanism of resistance in a “bug-drug” combi-
nation is point mutations, then a differential mutation rate and
multidrug therapy with treatment failure are most likely to be
factors that lead to the excess of drug resistance. As mentioned
above, drug resistance in M. tuberculosis is from point mutations,
and both a differential mutation rate and multidrug therapy with
treatment failure played roles in MDR in TB (39). On the other

hand, if the genetic mechanism of resistance is horizontal trans-
mission of plasmids or mobile elements, then a differential recom-
bination rate, genetic linkage, and associated linkage selection
may play more important roles, because resistance determinants
that are located in the same mobile elements or plasmids are likely
to be transmitted together. As described above, conjugative trans-
posons in S. pneumoniae contain MDR determinants, and both
genetic linkage and recombination rate play important roles in the
excess of MDR S. pneumoniae (31, 38).

The increasing ease and economy of genomic methods are
making these tools increasingly important for studying MDR
mechanisms. Hypotheses involving differential mutation/recom-
bination rate (see “Highly mutable or recombinogenic bacterial
lineages” above) can be tested by estimating historic mutation or
recombination rates for lineages with and without MDR from
sequencing data. If the genetic mechanisms of drug resistance are
known, sequencing of bacteria can be used to test for multiple
mechanisms: the presence of a single element conferring MDR
(see “Single biochemical mechanism conferring resistance to mul-
tiple drugs”), genetic linkage between drug resistance determi-
nants (see “Genetic linkage”), the presence of a single resistance
determinant in strains at the beginning of treatment in longitudi-
nal samples from a patient (see “Multidrug therapy with acceler-
ated treatment failure in resistant infections”), the correlation in
the presence of drug resistance determinants in sequences of dif-
ferent bacterial species across space or time (see “Bystander selec-
tion”), and signs of population admixture (see “Niche differenti-
ation: aggregation of multiple drug selection pressures within
specific populations” and “Importation of MDR strains and geo-
graphic source-sink dynamics”). Furthermore, phylogenetic
methods (125) can be used to test whether resistance to the new
drug arose in a background of resistance to older drugs; if this is
the case, strains resistant to the new drug should be more closely
related to those resistant to the old, compared with suitable sus-
ceptible controls (see “Associated linkage selection”). Positive
epistasis could be detected by examining whether substitution
rates between different resistance mutations are correlated (see
“Positive epistasis between drug resistance determinants or be-
tween resistance determinants and genetic background”). While
the potential of these methods is clear, they are crucially depen-
dent on adequate sampling and quality metadata (such as time
and place of isolation, reason for obtaining an isolate [carriage
surveillance, outbreak-driven surveillance, or clinical culture],
patient characteristics, and disease manifestation). Such epidemi-
ological context is invaluable in aiding the interpretation of con-
clusions from phylogenies or other genomic analyses (126).

Through understanding these genetic and epidemiological
mechanisms of MDR and using the tools we have suggested
here to test each hypothetical mechanism, we will be able to
identify the cause(s) of the excess of MDR and design more
effective interventions to prevent the origin and/or prolifera-
tion of MDR. Although some of our practical suggestions are
limited by the availability of alternative drugs, developing and
applying quick and sensitive diagnostic tools and using nar-
row-spectrum antibiotics (for example, fidaxomicin is a nar-
row-spectrum antibiotic for Clostridium difficile [127]) may be
two general ways to reduce the frequency of MDR strains. Al-
though development of pathogen-specific antibiotics is unlikely, it
is increasingly of interest and will potentially provide more oppor-
tunity to reduce the spread of MDR.
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