Table 1.

Virioplankton abundance in aquatic environments

Aquatic environmentaMethodVirioplankton dataDepth (m)SeasonCorrelationf of viral abundance with microbial parametersReference(s)
106 VLP/mlbVBRCapsid (nm)cChl adBAeOther
Marine
 Open ocean
  Northern Pacific (subarctic 45°N 165°W)ELM (Dg)x 0.06–0.381.1–4.50–5,000Sph NCi 0.73Depth (−0.83) 115
  N. Pacific (subtropical 24°N 165°W)ELM(D)x 0.4–1.91.0–8.70–5,000SpNC0.63 115
  Equatorial PacificFCMx(Sy) 5.3 5 0.6 173
  Sargasso Sea [2]TEMk/cl 0.003 ± 0.001525 Sm 256
  Eastern Caribbean Sea [9]ti TEM/c1.9 ± 1.30–200Sp 256
  Western Caribbean Sea [7]tTEM/c4.8 ± 30–200Fn 256
  North Atlantic (49°N, 16°W)TEM 14.9 50 30–6010 Sp 19
  Barents Sea (71°N 31°E)TEM 0.06 3 30 Wo 19
  Southern Ocean tTEM1.2–5.4 0 S 296
  Southern Ocean tTEM0.07–0.5 0 W 296
  Mediterranean SeaFCM(S)2.3–6.55–2000.35 173
 Coastal ocean
  Bering (55°N) and Chukchi (73°N) Seas [26]tTEM2.5–3610 ± 5.50–406S0.81BPr(ms) 304
  Arctic Ocean, Resolute, Canada (sea ice)TEM9–13072–1050–700–4 cmSpMMBP (m) 172
   (sea water)TEM 1.120–100–8SpMMBP (m) 172
  Pacific Ocean, Japan [4]ELM(D)x 1.4–402.3–180–200Sp-F 116
  Northern Adriatic Sea [3]ELM(D)0.1–9515 ± 10.40–15Year0.720.8 D-DNAp(NC) 343
  Northern Adriatic Sea [5]tTEM1.2–8730–60Sp-SNC0.7 S%q(−0.51) D-DNA (NC) 342
  Gulf of Mexico, Fla. [5]TEMx 0.05–1.6 0 SD-DNA (m) 138
  Gulf of Mexico, Fla. [7]tTEM/c0.55–1.30–2,500SNCNCD-DNA (0.74) 28
  Gulf of Mexico, Fla. [2]TEM/cx 0.24–0.45 0 S 240
  Gulf of Mexico, Tex. [10]tELM(Yt)x 10–120 0 NCNC 122
  Gulf of Mexico, Tex.ELM(Y)* 0.3–790.93 349
ELM(D)*
  English ChannelFCM(S) 18 0–20.9 173
  Mamala Bay, Hawaii [19]TEM/c0.005–310–75Year 244
  Bahamas [2]TEM/c0.42–2.3 0 S 240
  Santa Monica, Calif.TEM13–47 0 Sp-S 356
  Santa Monica, Calif.ELM(S)153 0 Sp 214
  Santa Monica, Calif.TEM118 0 Sp 214
  Santa Monica, Calif.ELM/c(D)x 23 ± 0.04 0 W 97
  S. Calif. Bight, Santa Monica, Calif.ELM(S) 18 14.20–800Sp 214
  S. Calif. Bight, Santa Monica, Calif.TEM 16 0–800Sp 214
  S. Calif. Bight, Santa Monica, Calif. [4]tTEM0.3–12.4<600–900FNCS+ 56
  S. Calif. Bight, San Diego, Calif. [4]tTEM12–28<600–2WNC 56
  Long Island Sound [4]TEM/c150 ± 95 1 S 256
  Gulf Stream, Fla. [2]TEM/c460 ± 28.650 F 256
  Key Largo, Fla. [8]tTEM/c1.7–20–35NC0.58S% (−0.97) 243
  Raunefjorden, NorwayTEM11–350–25SNCBP (0.6) 120
  Raunefjorden, NorwayTEM0.01–9.916 ± 2030–60 1 Year 19
  Raunefjorden, NorwayTEM0.5–1.8<60 1.5Sp-S 35,27
  Paradise Harbor, AntarcticaTEM0.2–1.30.7–60–200Sp 25
  Solar salterns (37–372‰)TEM50–10020–50NC0.97BP (NC) 113
  Dead Sea, IsraelTEM9–73x = 4.40–70Sp-F0.5–10 227
Estuarine
 Lake Saelenvannet, NorwayTEM20–30050 ± 301 and 2Sp0.59 329
 Tampa BayTEMx 6.3–24.3 0 Sp-FD-DNA (m) 138
 Tampa Bay [3]tTEM/c27–46 0 S0.970.94D-DNA (0.74) 28
 Tampa Bay [4]TEM/cx 6–340–100.86D-DNA (m) 240
 Tampa BayTEM/c4.8–200.9–9 0 Year0.7250.56Temp.u(0.65) S% (−080) 136
106 VLP/mlb VBRCapsid (nm)c Chl ad BAe Other
 Tampa BayTEM5.2–160.4–9.30 Year 58
 Cyanobacterial mat, Tex.ELM(Y)x 960 0 W 122
 Chesapeake Bay [6]tTEM2.6–140  (x = 25)3–2630–600–30YearMDepth (NC) 367, 368
 Chesapeake BayTEM 10.1 3.230–601 Sp 19
 Gulf of Bothnia, Sweden [3]tTEM17.5–50x = 11.630–6025–230SNCS+ 56
Freshwater
 Sproat Lake, CanadaTEM1.5–260–2001 Year 149
 22 lakes, Quebec, CanadaTEMx 41–250  (x = 110)76–4.9  (x = 23)<701 S0.52NCDOCv(NC), PO4 w (0.57), BP (0.5) 171
 Pond, Hellebaek, DenmarkELM(S) 22 4.4 214
 European Alpine lakesTEM1–214–3140–901–9S 249
 Lake Constance, GermanyTEM10–4020–500–8Sp-SM0.57 121
 3 lakes, Tex.ELM(Y)x 2–1420 Sp 122
 Manoa stream, HawaiiTEM/c >10 0 Year 244
 Lake Superior, surface microlayerTEM0.7–2.80.2–0.520 μmS-F 320
 Lake Superior, water columnTEM0.15–0.90.03–0.70–20S-F 320
 4 lakes, Taylor Valley, AntarcticaELM(Y)4.2–33.53–8.50–35SMMBP(m) 144
 Lake Kalandsvannet, NorwayTEM20–2000.5–25S 120
 Lake Plußsee, GermanyTEM 254 41 30–600.2Sp 19
 Lake Plußsee, GermanyTEM>100 1–27Year 71
 Lake Plußsee, GermanyELM(D)0.3–25.740–100W-SD-DNA (m) 265
 Lake Plußsee, GermanyELM(D) 13 0–5FM 344
  Epilimnion
  MetalimnionELM(D) 43 5–10F 344
  HypolimnionELM(D) 28 10–25F 344
 Danube RiverTEM12–612–1760–900 YearMBP (m) 176
  • a Values in brackets are the number of stations sampled.

  • b Viral abundance in 106viruses-like particles (VLP) per milliliter.

  • c Dominant capsid size in nanometers.

  • d Chlorophyll a abundance.

  • e Bacterial abundance.

  • f Values in parentheses arer 2 values for correlation of viral abundance and parameter values.

  • g DAPI fluorochrome stain.

  • h Spring.

  • i No significant correlation.

  • j Sampling stations were along a transect.

  • k Transmission electron microscopy.

  • l Preconcentration of virioplankton employed.

  • m Summer.

  • n Fall.

  • o Winter.

  • p Dissolved DNA.

  • q Salinity.

  • r Bacterial productivity.

  • s Parameter was measured but not tested against viral abundance.

  • t Yo-Pro fluorochrome stain.

  • u Temperature.

  • v Dissolved organic carbon.

  • w Phosphate concentration.

  • x Two virioplankton counting methods were used.

  • y Flow cytometry.

  • z SYBR Green I fluorochrome stain.